

SEVENTH FRAMEWORK PROGRAMME:
PRIORITY 7.1B
LARGE SCALE INTEGRATING
PROJECT (IP)

IP project number 247950 Project duration: February 2010 – February 2014
Project coordinator: Joe Gorman Project Coordinator Organisation: SINTEF, Norway
Strategic Objective: 7.1.b website: www.universaal.org

Universal Open Architecture and Platform for Ambient
Assisted Living

Document

Type:
“Deliverable:”

Item Appearing in ”List of Deliverables in
DoW with delivery date shown in bold

“Supplementary Report”
As “Deliverable”, but delivery date not

shown in bold. These documents are
formally internal to the consortium, but can

be delivered on request.

 Project Deliverable, with independent sub-parts.
Each sub-part forms a coherent whole in its own right, and has
been edited and reviewed independently. The sub-parts are
integrated in this document, to form the deliverable as a whole.

 Project Deliverable (single document, no sub-parts).

X Sub-part of a Project Deliverable

Document Identification

Deliverable
ID: D1.3-E Part

title:
Part III: The universAAL Reference
Architecture for AAL

Release number/date: V1.0 18.11.2013
Checked and released by: Sergio Guillen/ITACA-A

Key Information from "Description of Work" (from the Contract)

Deliverable Description Specification of the Reference Architecture. Text, reference figures, UML
diagrams. Rules about how to interpret the specification. Includes universAAL
protocol specifications, API specifications and ontology.

Dissemination Level PU=Public
Deliverable Type R = Report
Original due date
(month number/date)

M33/ 31.10.2012

Authorship& Reviewer Information
Editor (person/ partner): Rubaiyat Sadat/USIEG
Partners contributing Rubaiyat Sadat/USIEG, Paul Koster/Philips, Miran Mosmondor/ENT, Dario

Salvi/UPM, Michele Girolami/CNR, Venelin Arnaudov/Prosyst, Pilar
Sala/UPVLC

Reviewed by (person/
partner)

Sten Hanke/AIT, Joe Gorman/SINTEF

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 2 of 65

Release History

Release

number

Date issued
Milestone*

eRoom

version

Release description /changes made

0.1 05.03.2013 PCOS proposed 1 Adapted document from previous version

0.2 06.05.2013 Intermediate
approved

2 Added sections about Building Blocks, mapping,
compliance and verification

0.3 10.05.2013 3 Update summary and conclusions

0.4 30.05.2013 External proposed 6 Updated building blocks section, change structure and
complete missing definitions of RAS

0.5 28.08.2013 External revised 8 Addressed reviewer comments

1.0 18.11.2013 Released 10 TM release

* The project uses a multi-stage internal review and release process, with defined milestones. Milestone names include
abbreviations/terms as follows:

• PCOS = ”Planned Content and Structure” (describes planned contents of different sections)

• Intermediate: Document is approximately 50% complete – review checkpoint

• External For release to commission and reviewers;

• proposed: Document authors submit for internal review

• revised: Document authors produce new version in response to internal reviewer comments

• approved: Internal project reviewers accept the document

• released: Project Technical Manager/Coordinator release to Commission Services

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 3 of 65

Table of Contents
1	
 Release History ... 2	

2	
 Table of Contents .. 3	

3	
 List of Figures ... 4	

4	
 List of Tables ... 4	

1	
 About this Document .. 7	

1.1	
 Relationship to other sub-parts of this deliverable ... 7	

1.2	
 Relationship to other versions of this Part ... 8	

1.3	
 Structure of this document ... 9	

2	
 Introduction ... 10	

2.1	
 Purpose of Reference Architecture .. 10	

2.2	
 Expected impacts and goals of the Reference Architecture ... 11	

2.3	
 The Abstraction Process: An Empirical Approach .. 12	

3	
 The business context ... 13	

3.1	
 Stakeholders and expectations considered in the RA .. 13	

3.2	
 Service capabilities supported by RA .. 15	

4	
 The structural aspects (component model) ... 17	

4.1	
 Major information concepts from reference model ... 17	

4.2	
 Top-level components .. 18	

4.3	
 Abstract building blocks .. 19	

4.3.1	
 A layered model for the Runtime Support Platform ... 20	

4.3.2	
 Information Model .. 24	

5	
 The behavioural aspects (service collaboration patterns) ... 26	

5.1	
 Runtime Platform Provider .. 26	

5.1.1	
 Platform-to-Platform services ... 26	

5.1.2	
 Platform-to-Client services ... 27	

5.1.3	
 Peer services .. 29	

5.1.4	
 Platform-to AAL Service Part ... 30	

5.2	
 Community Platform Provider ... 32	

5.2.1	
 Platform-to-Platform services ... 32	

5.2.2	
 Platform-to-Client services ... 33	

5.2.3	
 Peer services .. 35	

5.3	
 Developer Support Platform .. 36	

5.3.1	
 Platform-to-Platform services ... 36	

5.3.2	
 Platform-to-Client services ... 37	

5.3.3	
 Peer services .. 38	

5.4	
 Authorities and supporters (Authoritative service provider) ... 39	

6	
 The deployment/distribution aspects ... 40	

6.1	
 AAL Space deployment scenarios ... 41	

6.2	
 Deployment of other platform components ... 44	

6.3	
 Example of deployment aspects for a sample ecosystem .. 44	

6.3.1	
 Platform Stakeholder Perspective ... 45	

6.3.2	
 Client Stakeholder Perspective ... 47	

7	
 Instantiation and consolidation process from RA to CA .. 50	

8	
 Architecture Compliance .. 52	

Level 1: scope and stakeholders compliance ... 52	

Level 2: services compliance ... 53	

9	
 Validation of Reference Architecture ... 55	

9.1	
 Verification of Reference use cases addressed by the Reference Architecture 55	

9.2	
 Verification of Reference Requirements .. 56	

9.3	
 Verification of the abstraction process: mapping of RM to RAS .. 57	

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 4 of 65

10	
 Conclusion/Further Work .. 59	

References ... 60	

Appendix A. Mapping between Reference use cases and RA services .. 61	

Appendix B. Mapping between high level requirements and RA Services .. 63	

Appendix C. Mapping between RM concepts and RA services ... 65	

List of Figures
Figure 1: The relationships between the major parts of D1.3 .. 7	

Figure 2: The AAL value network supported by universAAL ... 13	

Figure 3: Services Architecture for AAL main stakeholders and their services capabilities 16	

Figure 4: Major information concepts related to AAL service management ... 17	

Figure 5: Top level platform components for AAL platform reference architecture 18	

Figure 6: Each client stakeholder is presented a tool component for emphasizing the need for
standardized interaction mechanisms ... 19	

Figure 7: Relationship between Abstract Building Blocks and top level Reference Architecture
components ... 19	

Figure 8: The consolidated decomposition model of the Runtime support platform at the level of
abstract building blocks .. 21	

Figure 9: The collaboration model among different building blocks ... 25	

Figure 10: Platform-to-platform services provided by Runtime Support Platform 27	

Figure 11: Platform-to-client services provided by Runtime Support Platform 29	

Figure 12: Peer services provided by Runtime Support Platform .. 30	

Figure 13: Services provided to AAL Service Part at runtime ... 32	

Figure 14: Platform-to-Platform services provided by Community Support Platform 33	

Figure 15: Platform-to-Client services provided by Community Support Platform 35	

Figure 16: Peer services provided by Community Support Platform ... 36	

Figure 17: Platform-to-Client services provider by Developer Support Platform 38	

Figure 18: Peer services provided by Developer support provider .. 39	

Figure 19: A simplified deployment scenario for RA .. 41	

Figure 20: Deployment of multiple services on top of the same Runtime Support Platform 42	

Figure 21: Deployment of multiple services on top of multiple Runtime Support Platforms 42	

Figure 22: Scenario showing multiple services deployed at multiple locations on top of multiple
runtime supports ... 44	

Figure 23: The ecosystem involving the actors described in the storyboard ... 47	

Figure 24: The table used for mapping building blocks to requirements (cropped both vertically and
horizontally) ... 56	

Figure 25: Summary of mapping RM concepts to RA services ... 58	

List of Tables
Table 1: All Community, Developer and Tools Abstract Building Blocks ... 20	

Table 2: All Runtime Support Platform Abstract Building Blocks .. 24	

Table 3: Types of services exchanged in the Reference Architecture Type of service 26	

Table 4: Platform-to-platform services provided by Runtime support providers 26	

Table 5: Platform-to-client services provided by Runtime support provider ... 27	

Table 6: Peer services provided by Runtime support provider .. 29	

Table 7: Services provided to AAL service at runtime .. 30	

Table 8: Platform-to-Platform services provided by Community Support Platform 32	

Table 9: Platform-to-Client services provided by Community Support Platform 33	

Table 10: Peer services provided by Community Support Platform .. 35	

Table 11 Platform to Platform services by Developer Support Platform ... 36	

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 5 of 65

Table 12: Platform-to-Client services provider by Developer Support Platform 37	

Table 13: Peer services provided by Developer support provider ... 38	

Table 14: Audit services provided by Authorities .. 39	

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 6 of 65

Executive summary

This deliverable describes the AAL Reference Architecture (RA) as developed in the project
universAAL.

In defining the RA we follow a Service Oriented Architecture development methodology and notation
called SOAML (UML-based SOA). We summarize the business context for the RA as investigated
and documented in universAAL (in deliverable D1.1 and D1.2). The business context contains mainly
the stakeholders and the value propositions they offer to each other. These value propositions are then
mapped to specific services that can be traded among the stakeholders. By mapping these services
onto a technological ICT architecture we show how the services can be implemented and deployed in
the real world. We provide examples of typical deployments demonstrating simple and more
complicated scenarios.

The RA is developed through a combination of bottom-up empirical data (collected during the
universAAL consolidation process) and top-down definitions. The first one resulted in the description
of abstract building blocks that are the main architectural pieces needed to construct the platform,
while the second process has resulted in the definition of the Reference Architecture Services, RAS,
offered and consumed by the main platform components.

The RA needs to guarantee some level of compliance among concrete architectures, and at the same
time make sure to allow innovation and competition in the real world. This is the main challenge
facing us when defining the RA. This document has made the assumption that a RA needs to be as
simple as possible and focus on modular services that can be provided by independent businesses. In
that respect we have not defined the details of how the architecture should implement some
functionality but on what the architecture should provide.

The users of the RA can be the following:

• Healthcare providers and service institutions who want to invest in a specific AAL
technology. The RA will allow then to evaluate the functionality of the intended technology,
what it provides and what services it lacks, and whether it will be interoperable with other
technologies.

• Platform developers who are aiming at creating a standard platform or who are aiming at
migrating their existing platforms to a standard platform. In the same way as service
providers, these actors can use the RA to evaluate their own platform, map its functionality to
the services defined in RA, and in this way do a SWOT-type of analysis (SWOT is an
acronym: Strengths, Weaknesses, Opportunities and Threats) of their own technology.

• AAL application developers can use the RA to build applications that will have a better
chance of being portable across specific platforms.

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 7 of 65

1 About this Document
This document is one of the main parts of deliverable D1.3 that documents the work performed in task
1.4 “Consolidated AAL Reference Architecture specification”. Concretely, this part addresses the
specification and design of the universAAL Reference Architecture for AAL (RA). The RA has two
inter-related purposes:

1. Describe ICT architectures that are a reflection of the real-world AAL business domain, and
that address real-world issues in the AAL business domain.

2. Abstract away specific technologies and solutions, and focus on conceptual, generic features
of ICT support for AAL. At the same time the RA should support easy utilization of its
concepts in form of specific solutions.1

RA is not useful if it is only about abstract concepts with no relation to real-world technologies and
solutions. RA interacts with specific solutions and technologies in two distinct ways:

1. Consolidation: Experiences from real-world empirical implementations of AAL solutions are
important for creating a valid RA. This is done through the consolidation process where
specific solutions from earlier projects are analysed.

2. Instantiation: Creating new AAL solutions based on our RA, or migrating from existing
solutions, is what the instantiation process is about. An example of such a process is provided
in this document. A more elaborate case is the Concrete Architecture (CA) developed in
universAAL project, and provided in Part IV of D1.3.

1.1 Relationship to other sub-parts of this deliverable
Figure 1 below illustrates how D1.3 part III (this document) is related to other major parts of D1.3.

Figure 1: The relationships between the major parts of D1.3

1 The RA represented in this document can be regarded as the architecture for a class of ICT-based systems, one
kind of which is AAL systems. It is necessary to take this approach because AAL systems do not exist in
isolation and closely interoperate with other ICT systems and platforms. We see it as a positive aspect of the RA
for AAL not becoming "too specific" to the AAL domain, in this way creating unnecessary barriers for
interoperability with other platforms.

Top-­‐level	
 diagrams
+

“Technical	
 Diagrams”

RM
Extension	
 (Top-­‐down	
 process)

Abstraction	
 (Bottom-­‐up	
 process)

CA

D1.3	
 part II

D1.3	
 part III

D1.3
part IV

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 8 of 65

The pyramid to the left in Figure 1 illustrates abstraction. The upper parts of the pyramid are more
abstract (with respect to specific technologies and solutions) than the lower parts. The right side of
Figure 2 shows how the three parts are related to each other:

• The green rounded rectangle denotes the RA.

• The Reference Model (RM, part II) provides key AAL domain concepts such as stakeholders,
users and relationships that are then supported by the RA.

• The Concrete Architecture (CA, part IV) and consolidation results (part V, not shown in
Figure 1) provide the empirical input necessary for creating the RA. This empirical input is in
form of real world experience from developing real AAL platforms, on one side, the platforms
coming from the input projects, and on the other side, the platform being implemented in
universAAL project.

1.2 Relationship to other versions of this Part
D1.3-E part III addresses the following aspects of previous versions:

• D1.3-B part III was mainly focused on the runtime component of the AAL reference
architecture. D1.3-C part III was the first attempt to include almost all the major stakeholders
in the AAL value network as envisioned in the universAAL description of work, i.e. runtime
support, development support, and community/service provider support. D1.3-D part III
extended the scenarios with different stakeholders with specific services provided, and D1.3-E
refined this to ensure consistency with the Reference Model (D1.3-E Part II)

• D1.3-B part III contained information that was collected from the consolidation process. Much
of this information was considered as part of first draft of universAAL Concrete Architecture
(part IV of D1.3-C). D1.3-C and D1.3-D part III had a more generalized stance resulting from
the top-down approach while D1.3-E combines top-down with the bottom-up approach.

• Related to the point above, D1.3-D part III outlines and describes the preliminary process used
to divide AAL architecture into reference and concrete parts. This is one of the more
challenging parts of defining reference architecture.

• As part of defining a process, D1.3-C part III has a discussion of success criteria for the AAL
reference architecture. D1.3-D part III refines this by addressing the purpose of the reference
architecture, and D1.3-E includes also a section about compliance with the reference
architecture

• D1.3-B part III used informal diagrams to represent the architecture. D1.3-C part III uses
UML diagrams, in particular SOAML which is a profile of UML designed to support the
documentation of service oriented architectures, but also deployment model diagrams
according to ARCADE methodology. D1.3-E also includes decomposition model diagrams to
illustrate the reference architecture abstract building blocks.

• D1.3-D part III has enlisted the specific and complete process of instantiating CA from a
given RA related to AAL. No changes have been done in version E

• D1.3-D part III completes the sample scenarios with AAL ecosystem from different
stakeholders’ point of view. No changes have been done in version E

• D1.3-D part III introduces the authorities and supporters as a role and enlists the services
provided by these stakeholders. No changes have been done in version E

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 9 of 65

1.3 Structure of this document
The AAL reference architecture is presented in Chapters 2-10 as follows:

• Chapter 2 provides an introduction to the terms and purpose of RA, a list of criteria that
determine the success of the proposed RA (which are basically describing the concrete goal of
RA) and a description of the abstraction process from input projects through consolidation and
empirical validation through a proof-of-concept demonstrator.

• Chapter 3 provides an overview of the AAL business context, in particular the value network
that is used as the basis for the definition of the RA. The stakeholder groups in this value
network and their expectations are discussed here.

• Chapter 4 provides a mapping of the business environment onto an abstract SOA following a
simplified version of SOAML [1]. It also presents the results of the bottom-up process in the
form of Abstract Building Blocks and its Information Model, that allows describing the
structural aspect of the Reference Architecture

• Chapter 5 discusses the behavioural aspects, i.e. how service provision and consumption in the
RA happens, using a number of proven collaboration patterns from universAAL and other
input projects, in the form of Reference Architecture Services.

• Chapter 6 discusses shortly some deployment and distribution aspects of the RA. In particular
how deployment onto smart spaces (AAL Spaces in our RA terminology) is handled, as this
requires a high degree of dynamic deployment.

• Chapter 7 provides the description of the instantiation and consolidation process that exists
between RA and CA.

• Chapter 8 provides a simple example of an instantiation process including an example AAL
service.

• Chapter 9 discusses what methods and tools can be used to evaluate the architecture
compliance of any existing, or future, system toward universAAL Reference Architecture.

• Chapter 10 presents the results of the verification and validation processes with regard to
RUCs, Reference Requirements and Reference Model, to ensure the consistency and
coherence across these project results.

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 10 of 65

2 Introduction
AAL reference architecture is one of the major deliverables in universAAL. The project participants
have long experience in developing high technology AAL solutions and have cooperated in earlier
project with the users of such systems in developing AAL solutions. This experience has been the
main source of knowledge for developing the RA. The process itself has been long and revisions have
been made to the RA. This chapter documents some of the main challenges we have faced and the
process we have followed. In the following we provide a short introduction to the working definition
of reference architecture. We will then describe some success criteria that are used to evaluate the
quality of our RA. We will then describe the process we have followed and the choices we have made
along the way.

2.1 Purpose of Reference Architecture
The commonly referred definition of RA is given by OASIS, Open Group and OMG [2]:

"A reference architecture models the abstract architectural elements (building blocks) in the domain
independent of the technologies, protocols, and products that are used to implement the domain."

This working definition is used in our work, which we have extended in such a way that our RA also
describes the purpose of the RA with a list of expected impact of RA. In using the definition we have
consistently focused on the "what" and omitted the "how". The question about how the RA is
instantiated and used is answered during the instantiation of the RA into a concrete architecture (see
part IV and also Section 7).

During our work we have discussed the purpose of the RA. Although it might seem obvious that we
need a RA, it is sometimes not so easy to define the exact purpose of the RA. What we include in the
RA and what we exclude can be used as a guideline for what the RA can be used for. In our perception
what is useful to include in the RA are the following:

• A set of shared concepts: The basic concepts, such as overall groups of stakeholders and
classes of technology, need to be agreed upon. These shared concepts are mainly being
defined as part of the reference model in universAAL, with input from the RA activities.

• A set of generic use cases: These are the RUCs, derived by an extensive requirements analysis
of the AAL domain. The RUCs define what functional areas AAL systems should provide.

• A set of functions/services: A further specification of the RUCs in terms of services, which
allows us to build architectures in SOA manner (Chapter 5).

In addition, we have also deliberately tried to exclude some specific types of RUCs, concepts and
services based on the following criteria:

• Any RUCs, concepts or services that will prevent uptake: The list of RUCs, concepts and
services could have been much longer. We have tried to keep the lists short and include only
what we considered necessary. The longer the list, the more problematic the update will
become.

• Any RUCs, concepts or services that will prevent innovation: One important role of the RA is
to build a platform for innovation. Any RUC, concept or service that is part of the RA will
prevent some form of innovation because it will prevent some stakeholders in doing what they
consider innovative. The challenge is to strike a balance in order to maximize both innovation
and interoperability.

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 11 of 65

Apart of our definition of RA we will also need to define a compliance process. A compliance process
lies far ahead and implies involving a larger community of practitioners and users who will use the RA
and improve it in the process.

An important function of the RA is to highlight the innovative aspects of the proposed AAL platform
ecosystem and provide valuable input for the standardization efforts of universAAL partners. The
intentions, strategies and progress of the contribution work to the standardization organizations and
committees should be described in D1.4 - Guidelines for research in future versions of AAL Reference
Architecture and D8.3 - Standardisation usage plan and contributions.

2.2 Expected impacts and goals of the Reference Architecture
We have used the following success criteria which actually derive the expected impact and concrete
goals defining the RA:

1. Taking into account all major stakeholders: In the state-of-the-art of AAL systems, one of the
problems that have been highlighted as potential barriers for adoption is a lack of presence of
business models and value chains that attract certain stakeholders (e.g. service providers).. A
RA can help to overcome this problem by demonstrating how the various stakeholders'
expectations are addressed so providing a more comprehensive business context in which
attractive business models can be derived.

2. Allowing interoperability at a conceptual level: Concepts, functionality and business aspects
of AAL systems are under constant development. The RA should capture what is currently
agreed upon in the domain in order to enable a conceptual level of interoperability and
systematization of knowledge creation by specifying abstract components and building blocks
that define the basic framework of AAL systems.

3. Leaving space for innovation: AAL is an innovative area. A lot of resources are being invested
in R&D in order to both understands the domain and to understand the possibilities offered by
the technologies. RA should not prevent these innovations from happening.

4. Largest possible coverage of existing systems: The RA should demonstrate that it can cover
all the demonstrated architectures in the domain in terms of the already developed systems.

5. Different areas of compliance: The RA should allow stakeholders interested in offering or
consuming services to select what they need and omit what they don't. The RA should not
follow an "all or nothing" approach.

6. Interoperability with related domains: AAL systems are a specific type of mobile and wireless
systems, several types of which are used by many present and would-be elderly. It is
unrealistic to expect users to switch from other platforms to AAL platforms when they get old.
AAL platforms need to be interoperable with a number of similar platforms, and support
migration from other platforms.

7. Open for evolution: The RA should be open for changes in form of expanded scope or higher
levels of detail in the future as the market matures.

8. Accepted by the stakeholders: The RA should be accepted by the stakeholders in the domain it
covers.

Criteria 1-7 have been used extensively in defining this version of the RA. Criterion 7 has up to now
been out of scope for us. Nevertheless criterion 8 is the most important success criteria. Our future
work includes addressing wider acceptance by exposing the RA to a wider audience than universAAL
partners.

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 12 of 65

2.3 The Abstraction Process: An Empirical Approach
In addition to the software engineering process underpinning SOAML for documenting the RA, we
have used an empirical approach for arriving at the RA. This empirical approach includes two
interconnected processes inside the project:

• Bottom-up consolidation processes: Knowledge from the input projects were analysed in the
beginning of the project to create a first set of specifications for the RA. Most of the input
projects had already used their scientific approaches in arriving at their own specifications.
This gave us an extensive background material to start with.

• Top-down consolidation process: A task force was set up in the beginning of the project to
work with an extensive vision scenario for the project. Parts of this scenario were described in
Chapter titled “Example of deployment aspects for a sample ecosystem”. The process resulted
in storyboards and architecture descriptions which were used in a prototyping process in the
project. This has resulted in a proof-of-concept prototype that demonstrates a number of
complex and real world deployments of concrete architectures. In addition, the work on an
instantiation process for RA has resulted in an extensive proof-of-concept concrete
architecture (see part IV).

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 13 of 65

3 The business context
This section provides a short overview of the business context of the RA. We describe main
stakeholder groups and reference use cases (RUCs) for these stakeholders.

3.1 Stakeholders and expectations considered in the RA
Figure 2 shows a high-level view of a value network2 that has been used as a basis for creating the RA.
The stakeholders are presented as nodes and the provided services of value as arrows. These services
are described in more details later in this document, in Section 5.

Figure 2: The AAL value network supported by universAAL

We are addressing platforms for AAL. Figure 2 illustrates this by grouping the AAL stakeholders into
two groups:

• Platform stakeholders (rounded rectangles in Figure 2): These are stakeholders who provide
and operate platform components in an AAL environment. We envision a value network
where these platform stakeholders will provide services of value to client stakeholders and to
each other.

o Runtime Platform Provider – provides technological support for proper functioning of
AAL runtime environments. The AAL runtime environment is where users (the
elderly, but also their caregivers) live and interact with the AAL technologies. Typical
examples are smart homes.

2 A value network is a "web of relationships that generates both tangible and intangible value through complex
dynamic exchanges between two or more individuals, groups or organizations." Wikipedia.

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 14 of 65

o Developer Platform Provider – provides software engineering support for AAL
developers. AAL services contain a large amount of software, and support for proper
development, testing and maintenance of this software is crucial.

o Community Platform Provider – provides technological infrastructure for end users,
service providers and developers to build community3. The community can be used to
trade services, collect user requirements, enable collaboration among service
providers etc.

• Client stakeholders (ovals in Figure 2): These are stakeholders who buy and use platform
functionality provided by the above three groups of platform stakeholders (i.e. they assume
the existence of platform functionality). Client stakeholders considered so far in our RA are:

o End users - non-technical end users such as assisted persons and their caregivers who
consume AAL services.

o Developers - developers of AAL solutions and technologies.

o AAL service providers - providers of AAL services to the end users

The above classification can be easily mapped onto the stakeholder classification provided by
AALIANCE [3]:

• Primary stakeholders: These correspond to our end users.

• Secondary stakeholders: They correspond to the three platform stakeholders above (if we
consider platform in general as a service provided to platform clients). Also AAL service
providers are secondary stakeholders.

• Tertiary stakeholders: This category can be mapped to our developer category.

Our model of stakeholders can be said to be more towards clarifying the platform ecosystem, and in
this way can be seen as a specialization of the AALIANCE stakeholder model. Identifying who builds
and operates the AAL platforms, and who the clients of these platforms are, is in our view central for
the uptake of AAL services. Platforms can have the positive effect of accelerating service deployment
by providing reusable functionality. At the same time, platforms can inhibit innovation by imposing
too many constrains on service providers [4]. By explicitly dividing our ecosystem into clients and
platform providers we emphasize the services that are provided in the borderline as we will see in the
following sections.

The Authorities is a special class of stakeholders that represents socio-economical and legal
persons/organizations which have an impact on the AAL Domain. Their involvement deals with
ensuring funding for the services delivered to end-users and with drawing the legal framework in
which service provision can reach the target public.. As this group might not directly use the platform
and components, they are not shown in Figure 2. However, due to their relevance from the market
perspective their interactions with the AAL Platform and other stakeholders have been addressed in
this RA.

3 Note that by community building here we mean mainly online communities. Community building in general is
not an ICT problem and is an organizational science problem. Our models and RA address the ICT aspects of
building online communities.

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 15 of 65

The list of stakeholders above is highly generalized. In many specific cases involving specific
solutions a more specific list of stakeholders will be required. Deliverable D1.1 in universAAL has a
more elaborate list of stakeholders, with examples of specific types of each stakeholder group
presented above. For the discussions regarding the reference architecture, the list above, together with
authorities, suffices.

After identifying the stakeholders of relevance to the RA, we would like to look into their major
expectations, i.e. expected benefits that adopting the RA would provide them with. Deliverables D1.1
and D1.2 in universAAL document a thorough concerns and requirements analysis. What is important
for us here is to point out the expectations that have been addressed in the RA for each stakeholder
group:

• End users: Elderly, their families and caregivers are mainly concerned with service quality
and usability, which is related to how services are developed (supported by Developer
Platform Provider, see Figure 2), acquired (supported by Community Platform Provider) and
operated (supported by Runtime Platform Provider). Good development environments will
lead to better quality software, and will attract talented developers. Efficient communication
with service providers and among service providers will result in services that better meet end
user requirements. High quality runtime support will guarantee e.g. fault-tolerance and timely
response, and protect privacy. The RA tries to address these expectations by supporting the
platform stakeholders in the three central areas shown in Figure 2.

• Developers: are mainly concerned with good development environments, a knowledgeable
community of developers (addressed by Developer Platform Providers, see Figure 2), and
access to a market for their software (addressed by Community Platform Providers). Our RA
supports developers as a major stakeholder and allows developers to participate in a
community together with service providers and end users.

• AAL service providers: are concerned with efficient communication with their end users
(supported by Community Platform Provider), fluent interaction with the runtime environment
for their services (supported by Runtime Platform Provider), and access to talented developers
for development and personalization of their services (supported by Community Platform
Provider and Developer Platform Provider). The services provided by our RA allow service
providers to deploy, monitor and otherwise manage their services as provided to their end
users.

For platform stakeholders in general, the RA addresses a major expectation which is to promote the
standardization of the platform ecosystem for AAL technologies4.

It is these expectations (documented in more details in D1.1) that have guided the development of our
RA. These expectations have resulted in a set of reference use cases (RUCs) that play a central role in
laying out the functionality for AAL platforms.

3.2 Service capabilities supported by RA
We have so far seen who our major stakeholders are, what major expectations each of them have, and
which of these expectations are addressed in the RA. In this section we take the first step to bridge the

4 We use the word ecosystem to denote a business ecosystem as described by Moore: "In a business ecosystem,
companies coevolve capabilities around a new innovation: they work cooperatively and competitively to support
new products, satisfy customer needs, and eventually incorporate the next round of innovations."[4]

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 16 of 65

so-far business-related context to what will come in the following sections, i.e. the technical ICT
architecture. We will look at how each of the expectations is addressed in form of services exchanged
among stakeholders, what we call Reference Architecture Services or RAS.

A first step in this process is to map stakeholders to services they provide to each other. We have
already seen the interactions among the stakeholders in Figure 2. The lines among the stakeholders in
Figure 2 denote services of value exchanged among the stakeholders. Our RA is concerned with these
services and how they can be implemented in a standardized way.

The value network illustrated in Figure 2 is mapped to a SOAML Services Architecture diagram in
Figure 3 below. In this figure participants (rectangles) denote stakeholders and service contracts
(ovals) denote services that are exchanged among stakeholders. Client stakeholders are shown in
orange (grey in B/W print), and platform stakeholders are shown as rectangles with thick borders.

According to SOAML [1] services that are exchanged among stakeholders are modelled using a
specific type of collaboration called service contract. In Figure 3 each of the service contracts (ovals)
is a placeholder for all the RAS that are exchanged between the two parties to the service contract.
E.g. the service contract between Community Platform Provider and Runtime Platform Provider
denotes all the services provided by each of the two to the other. We will see the details of these RA
Services in Chapter 5.

Figure 3: Services Architecture for AAL main stakeholders and their services capabilities

 soaml Reference Architecture Serv ices Architecture

«servicesArchitecture»
Overall collaboration model

«participant»
Community Platform

Provider

«participant»
Developer Platform

Provider

«participant»
Runtime Platform

Provider

«serviceContract»
Services

«serviceContract»
Services

«serviceContract»
Services

«participant»
End user

«serv iceContract»
Serv ices

«participant»
Developer

«participant»
AAL Service Provider

«serv iceContract»
Serv ices

«serv iceContract»
Serv ices

«serviceContract»
Services

«serviceContract»
Services

«serv iceContract»
Serv ices

«serviceContract»
Services

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 17 of 65

4 The structural aspects (component model)
The following sections provide the mapping between the previously defined business context into RA
components, what is called the component model, as a first step to define what the specific services in
Figure 3 are, which will be described in detail in Section 5. The participants in Figure 3 are mapped
onto UML components that will implement the services. For the sake of simplicity we have provided
one top-level component for each of the participants on the overall value network. We will then for
each of the identified services define an interface between the two parties to that service, a provider
and a consumer interface. Important to note that although we have one component for each
stakeholder, in real circumstances (concrete architectures) each service can be provided by a separate
business entity, deployed and operated independently. Then we will decompose these top-level
components in their inner components that constitute the Abstract Building Blocks.

As an initial step, the following section will outline some of the major information concepts that are
used to qualify the provided services. These concepts are mainly related to the AAL service, and how
the architecture handles and processes AAL services in general.

4.1 Major information concepts from reference model
As part of specifying any information system one needs to be specific about the information that will
be processed by that system. In our case, the system is what we have seen in Figure 3-, whereas the
information that will be processed by that system is shown in Figure 4- below. In case of an AAL
platform, the major concept is the AAL service and the users involved in developing, providing,
acquiring and using that service. This is denoted in the diagram in Figure 4.

Figure 4: Major information concepts related to AAL service management

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 18 of 65

Information about an AAL service is stored in the platform in form of an AAL Service Description.
This description contains references to the implementation of the service. In our RA an AAL service is
constituted by parts that can be software, hardware or human resources. An AAL service might also
be constituted by other AAL services (a composed service). In this case the service description will
have a reference to the other services’ descriptions.

The platform is also concerned with who develops, provides and uses an AAL service. These
relationships are illustrated in Figure 4 between participants and information concepts.

4.2 Top-level components
In order to assign a high-level implementation (by a stakeholder) to the service capabilities, we map
each of the platform stakeholders -in Figure 3 onto a UML component as shown in Figure 5. In
addition we introduce a component called AAL Service Part which is the implementation of a part of
an AAL service (as introduced in Figure 4).. An AAL service and its parts are third party components,
as they are provided by external parties on top of the platform. Nevertheless it is a central component
to relate to since a major part of the services provided by e.g. Runtime Support Platform is provided to
AAL Service Parts in runtime.

Figure 5: Top level platform components for AAL platform reference architecture

In addition to these top-level platform components (which implement platform services provided and
consumed by platform stakeholders), we introduce three top-level tool components as shown in Figure
6. In a service-oriented architecture some component needs to provide the service that the system is
promising to provide to the users. In the RA we assign these services to only a few top-level
components because we don't want to have a detailed component list (which will be different from
architecture to architecture). Each of these top level components represents interactions with client
stakeholders5.

5 Although the platform components will also have associated tools to be used by the platform stakeholders,
these are not yet specified as part of the RA. Our main focus so far has been on tools that are provided to client
stakeholders because we believe standardized tools for client stakeholders is of higher priority at this stage.

 soaml Top lev el components

«participant»
Community Platform Prov ider

«participant»
Dev eloper Platform Prov ider

«participant»
Runtime Platform Prov ider

Runtime Support Platform AAL Serv ice Part

«participant»
AAL Serv ice Prov ider

Community Support Platform Dev eloper Support Platform

provided by provided byprovided by provided by

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 19 of 65

Figure 6: Each client stakeholder is presented a tool component for emphasizing the need for

standardized interaction mechanisms

4.3 Abstract building blocks
As presented before, the Reference Architecture is divided into three “double” top level platform
components: Runtime, Developer and Community Support sets of Platforms and Tools. The
abstraction process from Concrete Architecture to consolidated Reference Architecture involved a
mapping of Concrete Architecture building blocks and Reference Architecture building blocks with
regard to the aforementioned three top level platform components. The building blocks described here
in the Reference Architecture are called Abstract Building Blocks, which will find their decomposition
into concrete components in the Concrete Architecture, in Part IV of the deliverable..
Figure 7 presents the above mentioned mapping between these Abstract Building Blocks and the top
level platform components, and following are the descriptions of each abstract building block (with a
special focus on those of the Runtime Support Platform).

Figure 7: Relationship between Abstract Building Blocks and top level Reference Architecture

components

 cmp Tools

Community Support
Tools

Dev eloper Support
Tools

Runtime Support
Tools

«participant»
End user

«participant»
AAL service provider

«participant»
Developer

uses

uses usesuses uses uses
uses

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 20 of 65

Building block Description

Control Center
(uCC)

The universAAL Control Center (abbreviated as uCC) is uniquely related to
Runtime Support Tools building block in RA as it supports the deployment of
new AAL services into an AAL environment. This deployment includes the
steps that must be done by the deployer (e.g., case manager, technician, or
advanced end user) to get the new AAL service (application, hardware, human
resources) working in the AAL space. The uCC runs on the Execution
Environment, and its three main tasks are installing, configuring and
personalising the service. Furthermore, the uCC can support the reconfiguration
and uninstallation of AAL services. Also, it provides an interface to easily
browse and download the AAL services from the uStore. All these behavioural
aspects are consolidated as RAS in section 5

Developer Depot The Developer Depot provides all resources a developer needs to get started
developing AAL applications and plug-ins for the targeted platform. Through
the Depot the developer can find and install the development tools (AAL
Studio), binary and source code for the execution platform, examples, and
documentation of the tools and the platform. Thus Developer Depot is uniquely
abstracted as top-level Developer Support Platform where platform-to-platform,
platform-to-end-users behavioural aspects are defined as Reference Architecture
Services (RASs) in section 5

AAL Studio The AAL Studio provides a set of development tools that supports different
parts of the development process, and that gives the developer easy access to the
resources of the Developer Depot. Thus it uniquely builds the Developer
Support Tools building block in RA.

uStore The uStore is the is mapped to both Community Support Platform and
Community Support Tool building blocks in RA because uStore gives the end
user (assisted person or care giver) a simple way to find and acquire AAL
services, and to providers and developers it offers a store where they can upload
and distribute their AAL Services. An AAL Service can include not only AAL
application (software) and hardware, but also human resources. By acquiring an
AAL service, required software (applications and device drivers) will be
deployed to the user’s runtime platform, access will be provided to required
remote software services, and agreements will be made with (local) service
providers to reserve required human resources both for deployment and use of
the service. For the Community Support Platform building block, the uStore
provides facilities to offer their AAL applications to service providers. For the
service provider, the uStore gives a management tool where they can find AAL
applications offered by developers, make agreements with developers to publish
the applications as part of a service, and add the services they offer to the uStore
catalog. The uStore serves as the meeting point for all the involved stakeholders
where they can share ideas, request new services, ask for help and provide
feedback. Details of these behavioural aspects are presented as RAS in section
5

Table 1: All Community, Developer and Tools Abstract Building Blocks

4.3.1 A layered model for the Runtime Support Platform
The Runtime Support Platform is also known as Execution Environment as it comprises the Building
Blocks that allow AAL Applications (the software part of an AAL Service) to be executed in the space
of the end-user (like the Assisted Person home). For a better understanding of the Runtime, it is

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 21 of 65

presented in a relaxed layered model, where each layer can access interfaces provided by layers below
it.

Figure 8: The consolidated decomposition model of the Runtime support platform at the level of abstract

building blocks

Building block Description

Middleware There must be a footprint of the middleware on those nodes that can host “AAL-
aware” software components so that they are able to easily find and share the
local representation of the middleware. From another point of view, the
possibility of finding and sharing can be understood as a kind of container
functionality (also known as virtual hosting) of the footprint of the middleware
that facilitates the integration of its “users” into the distributed AAL system.

To hide the distribution, first, nodes must be discovered and enabled to
exchange messages. This is also known as support for seamless connectivity
between networking-enabled nodes.

A major challenge for middleware solutions is the exchange of data. The two
questions that have to be handled are: a) what is the data about (domain models),
and b) how is it represented (data representation framework). In contrast to data
models, the data representation framework belongs to the basics of middleware
software. The selection of a unified data representation framework makes it
possible that data from diverse domains can be exchanged using the same
middleware.

To provide for a higher level of independence of the middleware users (the
communicating parties) from each other, no assumptions about the whereabouts
of the parties should be made. In that sense, the middleware is acting as a broker
between the communicating parties. This brokerage must handle the exchange
of messages in a way that the heterogeneity of technologies used by the
communicating parties is absorbed by the middleware.

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 22 of 65

The API of this building block introduces a high-level protocol for
interoperability over all of the more specific protocols used to realize discovery
& peering (D&P) at the device level, and extends the scope of seamless
connectivity to the level of end-to-end communication between software
components. This API together with the underlying information model to be
established by the Data Representation building block should be the only visible
interfaces to the world outside the middleware.

Reliability has to be provided at Middleware level and above to provide the
ability of a system or a component to perform the required services under
specific conditions for a specified period of time. This includes the failure
probability, system availability and maintainability of a complex entity of
interconnected components.

Context
Management

This building block is supposed to provide for adequate communication (both
push- and pull-based) between providers and consumers of context data,
according to a common model for the representation of such information.
Hence, it must (1) provide an appropriate brokering for a push-based
communication between providers and consumers of context that makes it
possible to keep the communication peers independent from each other, (2)
guarantee a certain level of persistence both for reflecting the latest state and for
making sure that the history of such data does not go lost as long as it might be
needed, and (3) facilitate access to its own storage through appropriate support
for querying the gathered context data.

Extensions:

Context includes shared data representing user preferences and characteristics,
so that interaction with the user is personalised, and all components are able to
adapt their behaviour to the status and parameters that characterize the user with
whom they interact. It will be necessary to provide a model for representing
such shared data.

Components that provide commonly needed context data are called common
providers. The provision of this context, however, can be a matter of
“configuration” using the reasoning facilities of Context Management
representing the possibility for plugging in such reasoning rules.

Additional pluggable components that add new information model items,
vocabulary and descriptions which are not included by default in the platform
can be added to the Context model.

Service
Management

The Service Management building block is supposed to facilitate service-based
interoperability. It must handle the registration of services, broker between
service providers and consumers for handling service requests (e.g., by
matchmaking between received requests and available offers), and provide for
service composition and orchestration. For this purpose, a model must be
provided that defines how services can be described, how service requests are
constructed, and how workflows of composite services should be described. The
registration facilities must provide for a secure shared knowledge about the
availability of services so that the consumers have a chance to bypass possible
faults or change their behaviour when a missing service becomes available.

Extensions:

Common services can be used to speed up the development of different AAL

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 23 of 65

services and applications as well as making that development easier. The
provision of service, however, can be a matter of “configuration” using the
service orchestration facilities of Service Management, representing the
possibility for plugging in such common services that exist at a meta level in
terms of a script defining a workflow.

UI Management The UI Management building block addresses the challenges related to explicit
interaction between AAL spaces and its human users. It must provide for
independence of applications from the concrete I/O infrastructure available in
AAL spaces as the latter might differ in its occurrences considerably. It must
define a framework for capturing user input and presenting system output to
human users thereby brokering between applications and the concrete setup in
the AAL Space at hand. Two major challenges in this conjunction are the
support for multimodality and guaranteeing the adaptation of presentation to the
user situation and needs. The existence of a unified UI model might facilitate the
provision of such a UI framework.

Extensions:

Assuming that the separation between presentation and application tiers is
achieved by the UI Management, UI handlers can be added, removed or
replaced dynamically and freely; hence, they belong to the configuration-
specific set of managers. This kind of managers would be responsible for
capturing human input (with or without modality fusion) and presenting system
output to humans (with or without modality fission) in an application-
independent way.

Local Device
Discovery &
Integration (LDDI)

Not all networking-enabled nodes can be assumed to be “AAL-ready”, able to
run the middleware or parts of it for communicating with the other networked
artefacts. There are often several special-purpose devices, packaged without
manipulation possibilities, some even with limited memory or computational
capabilities (esp. sensor and actuator nodes from the domain of embedded
systems), but still networking-enabled with custom protocols. This building
block is supposed to facilitate adding such nodes to the device ensemble that
shapes an AAL Space. In order to enable the utilization of the functionalities
from such sub-networks, LDDI must overcome the diversity of such
heterogeneous systems and devices and help to integrate them based on the
common service representation of the middleware layer without much effort.
Usually, AAL-aware wrappers or adaptors are used to bridge such subsystems
with other AAL-aware artefacts.

Remote
Interoperability

A building block responsible for managing platform tasks in the context of
interactions between AAL spaces and the outside world. A more precise
definition can be provided for this building block based on an analysis of
different interaction cases where at least one of the communication parties (no
matter if humans or software components) resides within the AAL space and at
least one other communication party is outside it. Some common cases include
the provision of remote assistance by service providers, remote monitoring, and
remote access to services available within an AAL space.

This block does not necessarily represent a centralized solution through which
all communications with the external world take place. The reality of the
existing diversity with regard to wireless and wired communication channels
(e.g., DVB-T, ADSL, and UMTS) and protocols available nowadays must be

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 24 of 65

respected and if needed a bridging between legacies gateways provided.

Security The security block has to provide for trust, privacy-awareness, and access
control. An artefact that joins an open system like AAL systems must possess a
certain level of trustworthiness and hence the question here is about the right
balance between the openness of the system and the level of control needed. At
the level of joining the system, the level of trust needed is that the artefact at
hand does not have any malicious intentions and respects the game rules
assumed in the system.

After that, the level of freedom of artefacts that have joined the system becomes
important. Here, this building block must provide for different mechanisms of
access control so that a right balance between the level of trust and the level of
freedom in accessing critical data and services can be achieved.

One of the most important reasons for the above mechanisms is the protection of
the privacy of humans (e.g. to prevent that unwanted disclosure of health details,
personal preferences, habits, and lifestyle leads to discrimination, blackmailing
or problems in human relations). Therefore, it becomes very important that AAL
systems are made privacy-aware. This means that the system must know how
such data has been used, which copies of them exist where, which services could
or couldn’t be used by the users (e.g., due to their own privacy preferences),
etc., and be able to provide the users with an overview of this landscape so that
they can take corrective actions.

Table 2: All Runtime Support Platform Abstract Building Blocks

4.3.2 Information Model
The information model enabling the communication between the building blocks consists of the
following abstract information model elements.

• Operation Profile: A unit of information consisting of the description of a distinct operation
that should be registered with the Service Management building block

• Service Request: The content of a message sent to the Service Management building block
when outsourced functionality is needed to be provided

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 25 of 65

Figure 9: The collaboration model among different building blocks

• Operation Call: The content of a message for invoking a previously registered operation

• Operation Reply: The content of a message in reply to an Operation Call

• Service Response: The content of a message in reply to a Service Request

• Context Subscription: A unit of information consisting of the description of the kind of data in
which an event subscriber is interested

• Context Event: The content of a message sent to the Context Management building block
when shareable data is available for sharing as well as the content of a message sent by the
Context Management building block to a subscriber interested in the shared data

• Interaction Handler Profile: A unit of information describing the capabilities of a component
that can use certain I/O channels for handling interaction with human users, i.e. present
information to them and capture input from them

• Interaction Request: The content of a message sent to the UI Management building block
when the requester needs to present some info to a certain human user and / or needs his or her
input as well as the content of a message sent by the UI Management building block to a
component chosen for handling an interaction request

• User Response: The content of a message sent to the UI Management building block when a
component mandated to handle an interaction request is done as well as the content of a
message sent by the UI Management building block in response to an interaction request.

This information model ensures that different abstract building blocks collaborate and this information
model is the placeholder for the Reference Architecture Services (RAS) abstraction from Service
oriented design approach applied for RAS. For example, in the RAS provided by Runtime support
provider RAS#1.4 ‘User interaction management’ it is stated that user interaction with the runtime
platform is facilitated, e.g. by providing consisting look and feel and adaptability. This includes
different information flow among several building blocks, such as Service Request (among different
service management blocks), interaction request (among UI block and service management block) and
Interaction Handler Profile (among UI blocks). This also justifies the fact that there is (in fact cannot
be) no one-to-one relationship between RAS and building blocks as a single building block can
provide zero to many of the RASes and vice versa.

C1 C2
Service

Managementservice response

service request

reply

call operation

C1 C2
Context

Management
publish

notify

subscribe

C1 C2

User
Interaction

Managementinteraction response

interaction request

user input

choose UI handler

register operations

register capabilities

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 26 of 65

5 The behavioural aspects (service collaboration patterns)
As explained in section 3.2, the Reference Architecture Services (RAS) are the formalization of
collaboration patterns between stakeholders following SOAML methodology. These RAS have been
derived from the analysis of the RUCs and provide a comprehensive list of the type of services that
any AAL system should implement, however, none of the services, at this point in time, is considered
mandatory. Deciding if a RAS is mandatory for a system to be considered AAL needs participation of
the whole AAL community; this kind of decisions we hope to achieve it in the course of the
standardization process we have initiated in Task 1.5.

The use of RAS is two-fold, it could be used by a platform developer when designing his own system
as a guideline of the basic services he should implement, and also it could be used to evaluate existing
platforms.

In the following sections we will look into the details of each of the three platform components and its
associated tool component. The goal is to identify the high-level reference services (services bubbles
in Figure 3) that are provided at four different directions as shown in Table 3. Each type of service will
be described in its own section using a table and a diagram.

Each service is labelled with an ID RAS#A.B where RAS means Reference Architecture Service. "A"
refers to the Reference Use Case (RUC) category supported (see Section 9.1) and "B" is a running
number. These IDs are used as short-cut references to the services.

Table 3: Types of services exchanged in the Reference Architecture Type of service

Types of
Services

Meaning

Platform-to-
Platform

Services that are provided by one platform stakeholder to other platform
stakeholders of a different type (e.g. a web service provider requires remote data
from a remote database service provider).

Platform-to-
Client

Services that are provided by a platform stakeholder to client stakeholders (e.g. a
web service provider provides a remote configuration service to a client’s smart
kitchen).

Peer Services that are provided by one type of platform stakeholder to other platform
stakeholders of the same type (e.g. services exchange among runtime support
providers).

Platform-to-
AAL Service

Services provided at runtime to operational AAL Services. This category of services
is currently relevant for AAL Runtime Support Providers.

The following three sub-sections describe the above types of services for each of the three platform
stakeholders.

5.1 Runtime Platform Provider

5.1.1 Platform-to-Platform services

Table 4: Platform-to-platform services provided by Runtime support providers

id Service Provided to Description

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 27 of 65

id Service Provided to Description

RAS#1.1 Remote maintenance and
configuration

Community Support
Platform

Allow remote Configuration,
management and maintenance
of software installed in AAL
spaces.

RAS#1.2 Audit data management Community Support
Platform

Allow acquiring usage data
about service usage in AAL
spaces.

RAS#1.3 Service testing support Developer Support
Platform

Support sandbox testing of
services prior to real world
deployment.

Figure 10: Platform-to-platform services provided by Runtime Support Platform

5.1.2 Platform-to-Client services

Table 5: Platform-to-client services provided by Runtime support provider

Id Service Provided to Description

RAS#1.4 User interaction
management

Runtime
Support Tool

Facilitate user interaction with the runtime
platform, e.g. by providing consisting look
and feel and adaptability.

RAS#1.5 Secure communication Runtime
Support Tool

Facilitate secure communication of end user
data, e.g. encrypt, sign, authenticate to
backend.

 cmp Runtime Support for AAL Spaces (platform)

Runtime
Support
Platform

Community
Support
Platform

Developer
Support
Platform

Service testing support

Remote maintenance and
configuration

Audit data management

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 28 of 65

Id Service Provided to Description

RAS#1.6 Consent policy
specification

Runtime
Support Tool

Runtime Configuration Tool can specify
his/her consent preferences which denotes
who can access his /her data

RAS#1.7 Remote configuration
and maintenance

Community
Support Tool

AAL service provider can remotely
configure the service. In addition they can
do the maintenance remotely.

RAS#1.8 Communicate audit trail Community
Support Tool

Audit trail is communicated to the AAL
service provider which may contain
information such as usage etc.

RAS#1.9 Runtime orchestration
of services

Community
Support Tool

Service orchestrator is needed for runtime
provisioning and deployment of an
application through service dependency
discovery, service provisioning and service
association.

RAS#1.10 Pluggable user
interfaces

Community
Support Tool

Support the inclusion of new
components/interfaces at any time without
the need to restart the system.

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 29 of 65

Figure 11: Platform-to-client services provided by Runtime Support Platform

5.1.3 Peer services

Table 6: Peer services provided by Runtime support provider

Id Service Provided to Description

RAS#1.11 Communication Runtime Support
Platform

Allow generic
communication among
different types and
instances of runtime
platform.

 cmp Runtime Support for AAL Spaces (clients)

Developer
Support Tools

Runtime
Support Tools

Community
Support Tools

Runtime
Support
Platform

User interaction management

Secure communication

Consent policy specification

Remote configuration and maintenance

Communicate audit trail

Runtime orchestration of services

Pluggable user interfaces

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 30 of 65

Id Service Provided to Description

RAS#1.12 Discovery and peering Runtime Support
Platform

Allow discovery and
association of other
types of runtime
platform.

RAS#1.13 Sharing of information Runtime Support
Platform

Allow generic sharing
mechanisms for sharing
of information with
other types of runtime
platform.

Figure 12: Peer services provided by Runtime Support Platform

5.1.4 Platform-to AAL Service Part
Services provided to AAL service at runtime are a special case for the runtime support part of our
platform. These services are described here.

Table 7: Services provided to AAL service at runtime

Id Service Provided to Description

RAS#1.14 Manage
communication

AAL Service Part An AAL Service Part is provided an
interface to manage communication with
other service parts through Runtime
Support Platform.

 cmp Runtime Support for AAL Spaces (peers)

Runtime Support
Platform A

Runtime Support
Platform B

Communication

Discovery and peering

Sharing of information

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 31 of 65

Id Service Provided to Description

RAS#1.15 Support enrolment
into AAL Space

AAL Service Part AAL service is provided an interface to
manage enrolment of parts into an AAL
space. AAL service would get information
about the AAL space and discover peers.

RAS#1.16 Manage lifecycle AAL Service Part AAL service provided an interface to
perform functions related to lifecycle
management, e.g. updating, testing and
activation of parts.

RAS#1.17 Provide secure
communication

AAL Service Part AAL service is provided the capability to
receive encrypted and signed information.
It can also authenticate the user.

RAS#1.18 Manage context
information

AAL Service Part AAL service is provided the capability to
manage context history information
obtained the platform.

RAS#1.19 Register reasoning
rules

AAL Service Part AAL service can register rules that can be
fired by the Runtime Support Platform.

RAS#1.20 Manage platform
behaviour

AAL Service Part AAL service is given the capability to
modify specific platform specific
behaviour.

RAS#1.21 Obtain profiling
information

AAL Service Part AAL service is provided the capability to
obtain user profile information from the
platform.

RAS#1.22 Obtain user consent AAL Service Part AAL service can get user consent through
the platform.

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 32 of 65

Figure 13: Services provided to AAL Service Part at runtime

5.2 Community Platform Provider

5.2.1 Platform-to-Platform services

Table 8: Platform-to-Platform services provided by Community Support Platform

Id Service Provided to Description

RAS#2.1 Publish
development tools

Developer
Support
Platform

Upload, publish and advertise development tools,
training courses, related documentation, etc.

RAS#2.2 Get tool feedback Developer
Support
Platform

Get feedback on published tools.

RAS#2.3 Get service ideas Developer
Support
Platform

Get feedback about market needs.

 cmp Runtime Support for AAL Spaces (AAL serv ice)

Runtime
Support
Platform

AAL Service
Part

Manage communication

Support enrolment into AAL Space

Manage lifecycle

Provide secure communication

Manage context information

Register reasoning rules

Manage platform behaviour

Obtain user consent

Obtain profil ing information

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 33 of 65

Id Service Provided to Description

RAS#2.4 Manage profiles Runtime
Support
Platform

Storing and accessing/synchronizing user and
AAL space profiles.

RAS#2.5 Download service
parts

Runtime
Support
Platform

Download software to runtime platform.

RAS#2.6 Get runtime
support feedback

Runtime
Support
Platform

Get feedback about runtime support provider.

Figure 14: Platform-to-Platform services provided by Community Support Platform

5.2.2 Platform-to-Client services

Table 9: Platform-to-Client services provided by Community Support Platform

Id Service Provided to Description

RAS#2.7 Look for AAL
services

Runtime
Support Tool

Look for AAL Services based on user needs,
preferences and existing environment.

RAS#2.8 Create service request Runtime
Support Tool

Create a request describing new AAL Service
or new functionality needed.

RAS#2.9 Acquire AAL service Runtime
Support Tool

Purchase or freely acquire AAL Service
according to their status using legal framework
(SLA, licences etc.).

RAS#2.10 Provide service
feedback

Runtime
Support Tool

Provide feedback (comments, ratings etc.) on
existing AAL Service or service
provider/developer.

 cmp Community Support (platform)

Publish development tools Manage profiles

Get tool feedback

Get service ideas

Download service parts

Get runtime support feedback

Community Support
Platform

Publish development tools Manage profiles

Get tool feedback

Get service ideas

Download service parts

Get runtime support feedback

Dev eloper Support
Platform

Runtime Support
Platform

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 34 of 65

Id Service Provided to Description

RAS#2.11 Request maintenance
assistance

Runtime
Support Tool

Request assistance from AAL Service
Providers to install software etc.

RAS#2.12 Communicate inside
community

Runtime
Support Tool

Communicate with other users inside AAL
User community (exchange experience etc.).

RAS#2.13 Publish AAL services Community
Support Tool

Publish AAL services using legal & business
framework

RAS#2.14 Explore existing
services

Community
Support Tool

Explore existing AAL Services & AAL
Applications.

RAS#2.15 Communicate with
developers

Community
Support Tool

Find and manage business connections with
developers from AAL Developer Community.

RAS#2.16 Communicate with
community

Community
Support Tool

Communicate inside AAL Service Provider
community.

RAS#2.17 Bundle services Community
Support Tool

Join services of different service providers in
packages.

RAS#2.18 Run conformance
tests

Community
Support Tool

Run conformance testing on software part of
AAL Services.

RAS#2.19 Require service
certificate

Community
Support Tool

Require certificate for AAL Service.

RAS#2.20 Collect user feedback Community
Support Tool

Receive feedback from AAL User
Community.

RAS#2.21 Create service request Community
Support Tool

Create a request for new AAL Application
from AAL Developer Community.

RAS#2.22 Receive requests Community
Support Tool

Receive requests for new services or updates
of existing one from AAL User Community.

RAS#2.23 Upload service parts Developer
Support Tool

Upload software and software updates as AAL
applications for free or fee usage.

RAS#2.24 Make business
agreements

Developer
Support Tool

Make business agreements with service
providers to provide uploaded AAL
applications as part of AAL services.

RAS#2.25 Collect user feedback Developer
Support Tool

Receive feedback from AAL User
Community.

RAS#2.26 Receive requests Developer
Support Tool

Receive requests for new applications or
updates of existing ones from AAL User
Community and AAL Service Provider
Community.

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 35 of 65

Id Service Provided to Description

RAS#2.27 Communicate inside
AAL developer
community

Developer
Support Tool

Communicate between developers in AAL
Developer Community.

RAS#2.28 Run conformance
tests

Developer
Support Tool

Run conformance testing on uploaded
software.

RAS#2.29 Require certificate for
AAL service

Developer
Support Tool

Require certificate for AAL Application (based
on conformance test results).

Figure 15: Platform-to-Client services provided by Community Support Platform

5.2.3 Peer services

Table 10: Peer services provided by Community Support Platform

Id Service Provided to Description

RAS#2.30 Explore market Community Support
Provider

Explore proposed AAL Services
and interchange information with
users from different communities.

 cmp Community Support (clients)

Look for AAL Services

Create service request

Publish AAL services

Explore existing services

Acquire AAL service

Provide service feedback

Request maintenance assistance

Communicate inside community

Communicate with developers

Communicate with community

Bundle services

Run conformance tests

Require service certificate

Collect user feedback

Create service request

Receive requests

Upload service parts

Make business agreements

Run conformance tests

Collect user feedback

Receive requests

Communicate inside AAL developer
community

Require certificate for AAL service

Community Support
Platform

Look for AAL Services

Create service request

Publish AAL services

Explore existing services

Acquire AAL service

Provide service feedback

Request maintenance assistance

Communicate inside community

Communicate with developers

Communicate with community

Bundle services

Run conformance tests

Require service certificate

Collect user feedback

Create service request

Receive requests

Upload service parts

Make business agreements

Run conformance tests

Collect user feedback

Receive requests

Communicate inside AAL developer
community

Require certificate for AAL service

Runtime Support
Tools

Community Support
Tools

Dev eloper Support
Tools

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 36 of 65

Id Service Provided to Description

RAS#2.31 Link to AAL
Services

Community Support
Provider

Allow purchasing or acquiring of
AAL services from another
community support tool.

Figure 16: Peer services provided by Community Support Platform

5.3 Developer Support Platform

5.3.1 Platform-to-Platform services
Table 11 Platform to Platform services by Developer Support Platform

Id Service Provided to Description

RAS#2.32 Publish development
specification of the
platform

Developer
Support
Platform

Upload and publish the specification of the
development platform, tools, related
documentation, etc.

RAS#2.33 Share development API Developer
Support
Platform

Publish and share developed platform’s
shared APIs

RAS#2.34 Publicize the developed
features

Developer
Support
Platform

Publicize the features that are newly
developed by one platform

RAS#2.35 Host developer support
tools

Developer
Support
Platform

Acts as a host for development tools for
other developer support platforms

 cmp Community Support (peers)

Explore market

Link to AAL Services

Community
Support Platform A

Explore market

Link to AAL Services

Community
Support Platform B

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 37 of 65

Id Service Provided to Description

RAS#2.36 Test and verification of
other platform
specification

Developer
Support
Platform

Provides test and verification tools for
other platform specifications

5.3.2 Platform-to-Client services

Table 12: Platform-to-Client services provider by Developer Support Platform

Id Service Provided
to

Description

RAS#3.1 Provide IDE Developer
Support
Tool

Provide IDE with plug-ins etc.

RAS#3.2 Provide development tools Developer
Support
Tool

Allow using wizards, modelling tools,
conformance tools, build tools etc. during
development process.

RAS#3.3 Develop in community Developer
Support
Tool

Develop inside AAL Developer community
(Exchange ideas, discuss technical issues
etc.)

RAS#3.4 Contribute code Developer
Support
Tool

Contribute code to platform

RAS#3.5 Read and provide
documentation

Developer
Support
Tool

Read and provide documentation, guides,
tutorials etc.

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 38 of 65

Figure 17: Platform-to-Client services provider by Developer Support Platform

5.3.3 Peer services
Table 13: Peer services provided by Developer support provider

 Service Provided to Description

RAS#3.6 Link artefacts Developer Support Provider Allow linking of artefacts between
developer support tools

RAS#3.7 Exchange
artefacts

Developer Support Provider Exchange code, documentation
(about concrete architecture etc.)

RAS#3.8 Provide external
interoperability

Developer Support Provider Provide any needed information,
documentation and tools that
developers would need in order to
interact with another platform

 cmp Dev eloper Support (clients)

Provide IDE

Provide development tools

Develop in community

Contribute code

Read and provide
documentation

Dev eloper Support
Platform

Provide IDE

Provide development tools

Develop in community

Contribute code

Read and provide
documentation

Dev eloper Support
Tools

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 39 of 65

Figure 18: Peer services provided by Developer support provider

5.4 Authorities and supporters (Authoritative service provider)
Authorities need to audit and monitor audit trails to answer basic questions about access to sensitive
client data and possible leaks. This is provided by audit service that has a number of components,
given in following table.

Table 14: Audit services provided by Authorities

 cmp Dev eloper Support (peers)

Link artefacts

Exchange artefacts

Provide external
interoperability

Dev eloper Support
Platform A

Link artefacts

Exchange artefacts

Provide external
interoperability

Dev eloper Support
Platform B

Id Audit Service
Component

Description

RAS#4.1 Logging Provides a means to submit audit trail messages. A
record/metadata description will provide the client submitting
records with a description of the expected record type.

RAS#4.2 Reporting/analysis Provides capabilities to query the audit trail, both with predefined
queries and to submit custom queries

RAS#4.3 Monitoring/alerting Provides capabilities for real-time alert generation and notification
of events or event patterns matching both predefined and custom
patterns.

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 40 of 65

6 The deployment/distribution aspects
So far we have identified a set of reference services divided among three platform stakeholders. For
simplicity we grouped the services into large components representing our major stakeholders. This
means that we did not care whether the provided services were bundled or distributed. These issues are
related to the specific deployment cases. Although part IV of this deliverable provides a number of
more complex deployment examples, in this section we provide some generic patterns.

Each of the RA services described in Chapter 5 can in theory be deployed separately and operated by a
separate business entity (playing the role of one of our stakeholder types). For instance, one player can
specialize in security-related services while another might specialize in remote configuration.
Deployment is in this sense a business topic as well as a technical topic:

• Technical aspects: How will the deployed services interoperate? This implies agreeing on
where the services will run in the network, and how they will communicate with other
services, using what protocols etc. and how internal implementations will be hidden from
other services.

• Business aspects: Who will provide each service? Providing a service implies deploying the
service, operating it, and making profit by selling the service. It also involves issues of trust
and security and other regulations.

The reference architecture needs to accommodate for at least the most common business and technical
deployment scenarios. At the same time, the RA should not hinder innovation by supporting only a
pre-defined set of deployment scenarios and not allowing for new business and technical models to
emerge. This is the main challenge regarding deployment.

As a reference point for presenting the deployment and distributions aspects we will use the simplified
deployment scenario illustrated in Figure 19 below. The figure shows three physically distinct
deployment locations (shown as UML nodes) for each of the platforms. Each of these locations is in
charge of providing the services associated with that part of the platform. We assume the three
locations are physically distributed and connected using networks.

From a deployment point-of-view, runtime support poses a number of technological challenges and is
treated more in depth by the RA. AAL Service Parts run at runtime support provider locations (also
called AAL Spaces), and are supported by the Runtime Support Platform. It is important to note that
Runtime Support Platform might be operated by various actors in real world scenarios:

• In its simplest form, the users themselves might be able to operate the platform. This is the
case when e.g. a smart phone is used as the only runtime platform.

• In more complicated cases specialized actors might be hired to operate the runtime platform at
e.g. private homes or elderly houses. This might be the case when several sensors and home
automation services are in operation.

• A combination of several actors (e.g. users themselves together with hired assistance) might
be in charge of operating and maintaining the runtime support.

• In cases where more than one runtime platform exists (see e.g. Figure 20 and Figure 21)
multiple consolations of actors might be involved.

The next section demonstrates a number of cases for deployment of AAL services in the Runtime
provider platforms. The other two types of platforms (i.e. community support and developer support
platforms) will be shortly discussed in Section 6.2.

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 41 of 65

Figure 19: A simplified deployment scenario for RA

6.1 AAL Space deployment scenarios
AAL Service Parts are constituted by various resources that exist in AAL Spaces6, and that
communicate with each other in order to provide intelligent support to the inhabitant of these spaces.
These could be devices offering some functionality or data (sensors, switches or more intelligent
devices), human resources (involved care personnel) or software applications providing some desired
support to the End Users. The Reference architecture for AAL should therefore be able to support a
variety of scenarios for deployment of the software parts of the AAL Services in AAL spaces (i.e. on
top of runtime support). We present a number of these scenarios here.

One step up in the level of complexity from Figure 19 is deployments that allow multiple services run
in the same runtime environment. This is shown in Figure 20. This figure denotes scenarios where the
End User (e.g. an elderly) is equipped with AAL Runtime platform (e.g. a smart phone) that allows
access to a number of services. The scenario in Figure 20 can denote the following configuration:

• The AAL Space can denote the home of an elderly or the elderly's neighborhood. Since the
elderly can be mobile, the Runtime Support Platform can also be mobile (e.g. a smart phone
running Android OS).

• The Community Support Platform is an implementation that supports a number of services
described in Section 5.2 through a single web server.

• The Developer Support Platform might be a private developer site where developers can track
service usage patterns among the elderly using their services.

6 We will use the terms AAL Space and Runtime support provider location interchangeably as these locations are
where the ambient technologies are deployed. While the term Runtime support provider location stresses the
affiliation of the specific location to one of the major AAL Stakeholders, the term AAL Space presents the same
as multipart heterogeneous smart environment as introduced in Part II of this document (Reference Model).

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 42 of 65

• The service parts 1-3 are applications that are downloaded and installed on the AAL Runtime
Platform (e.g. a smart phone) 7.

• One or more legacy nodes that are not part of the AAL Service but could be communicated by
some Service parts and thus provide valuable contribution to the AAL Service. Although our
goal is that our reference architecture should be able to describe all concrete architectures, we
reserve a notation for legacy systems that are currently not describable by our RA. This is
shown in Figure 21 as a legacy node. A legacy node can always be regarded as a service part
running on a runtime environment.

Figure 20: Deployment of multiple services on top of the same Runtime Support Platform

Figure 21: Deployment of multiple services on top of multiple Runtime Support Platforms

7 Note that the three services here are assumed to consist of each one part.

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 43 of 65

Figure 21 shows a typical AAL scenario. This figure demonstrates e.g. an elderly person's home (the
AAL Space to the right) with a number of specialized services running on top of each their own
Runtime Support Platform. These services might represent sensors connected through a proprietary
sensor gateway, alarm systems running on top of an embedded OS, smart phones providing some form
of GUI, etc. This scenario also illustrates the importance of communication among Runtime Support
Platforms and why it is crucial to have a standardize interface for exchanging information among
runtimes despite different implementations..

In any realistic scenario an AAL service will involve several end-users (be it an elderly, a care
provider, a family member, etc.) in several locations. This also means that the service will have several
parts deployed in different AAL Spaces. For instance, a home alarm service will not only involve the
home of the elderly, but also the alarm company premises, and possibly the premises of a relative
(such as the children of the elderly). In this way the alarm company and the relatives can monitor the
alarm at the elderly's home. This scenario is shown in Figure 22 below. In this specific example we
can see a case with sufficient and realistic complexity:

• Service 1 is the alarm monitoring service. It might involve parts that run on normal Windows
PCs (Runtime support 1). These parts will be deployed at the premises of the alarm company
(premise 1 to the top-left of the figure) and at the elderly's home (AAL Space at premise 2
middle-left in the figure).

• Service 2 is the alarm software itself running e.g. on an embedded OS (Runtime support 2) on
a device representing the physical alarm. This service will most probably be deployed at the
elderly's home (premise 2).

• Service 3 is a communication service (e.g. SMS or email) that receives and forwards messages
from the alarm. This service can be deployed on e.g. a smart phone (runtime support 3) in the
premises of the elderly and of his/her son/daughter (premise 3 bottom-right in the figure).

The scenario in Figure 22 shows the importance of not only communication among the various
platform stakeholders, but also among the same stakeholder types (here runtime support providers).
We can imagine that a lot of service specific communication will happen outside the platform.
However, the value of a standardized platform becomes clear when multiple service providers need to
communicate with each other in a standardized way (even without knowing about each other).

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 44 of 65

Figure 22: Scenario showing multiple services deployed at multiple locations on top of multiple runtime

supports

6.2 Deployment of other platform components
We have focused in the deployment aspects relevant for the runtime support. This does not mean that
the other two platform stakeholders will not demand more complex deployment opportunities than
represented in the above cases. Other possible deployment cases can consider:

• Multiple community and deployment support providers. We can already see a number of
online support communities for developers (e.g. sourceforge, github). We can see the same
emerge for the AAL domain.

• Community and developer support providers that provides only a subset of the services
described in or RA. Our RA has been defined as an exhaustive set of services. It is clear that
not all stakeholders will be interested in all the services. We can see communities of platform
service providers emerge in the future.

6.3 Example of deployment aspects for a sample ecosystem
This section provides examples of how the deployment aspects of the reference architecture described
so far can be mapped onto a specific ecosystem. The examples are provided as a storyboard. More
details on how the concrete architecture for such an ecosystem might look like are provided in part IV
of this deliverable. Deliverable 1.1 contains more elaborate scenarios and storyboards describing some

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 45 of 65

of the features of the storyboard here in more details. The usage of RA for a sample ecosystem is
viewed from two different perspectives.

a) Platform stakeholders’ perspective

b) Client stakeholders’ perspective

In the following subsections, two different ecosystems are described to reflect the above mentioned
stakeholders who can use RA to achieve their respective goal.

6.3.1 Platform Stakeholder Perspective
Today AAL service providers in Norway have a large offering of services. These are often services
that specialize in areas such as monitoring systems, alarm systems, information provision to the
elderly, daily cleaning and care, and coordination of staff. These services are often provided using
proprietary technologies, and operate in isolation.

As a first step in streamlining the AAL market in Norway, uStore Inc., a company specializing in
AAL, decides to set up a community support portal for AAL service providers. uStore Inc. decides in
the outset to comply with the European AAL reference architecture. To begin with, the uStore portal
acts as knowledge exchange online community. The services from the RA that are supported are the
following:

• Collect feedback from users and service providers

• Collect ideas from users for new services

uStore Inc. markets the portal towards users, service providers, and developers. The portal becomes a
success. There are no other online sites in Norway to discuss AAL services. When the discussion
about service ideas becomes more structured, uStore launches services that allow

• Service providers to publish information about AAL services they offer

• Users to register a personal profile that will allow personalized access to the site

• Users to provide feedback to specific AAL services

At the same time uStore Inc. signs an agreement with a Norwegian online payment company, Betal
Inc, to provide payment services to uStore registered service providers. Betal is a partner of the
Norwegian State Pension and is specialized in supporting Norwegian citizens in financial issues
related to health services.

By now uStore has more than a hundred thousand registered users. It has become the de facto
directory for searching and acquiring AAL services. It is used by consumers and by municipalities,
and by SMEs who provide services to the municipalities. Gradually a market for privately acquired
AAL services has also emerged thanks to uStore. The service-oriented approach of uStore is praised
by municipalities and users because they can force service providers to provide complete and
packaged services to them, with clearly defined terms of service. End users are also happy because
they can have immediate access to feedback provided by other users about the different services. And
they can of course provide their own feedback. Integration with Betal AS is also considered one key
aspect of the solution.

AAL services are technologically advanced services including not only human resources but also lots
of software and hardware. uStore does not support the technical aspects of the services they have in
their directory. Only business-related terms of service specifications are supported, together with
audits and payments by Betal. By now, due to the growth in the number of AAL services per user,
technological issues start to emerge. Users complain about solutions not being interoperable, or that

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 46 of 65

they have to interact with and configure lots of devices all the time. On the other hand, maintenance of
technical components has become a considerable cost for the service providers and for the
municipalities. Users are not happy.

At the yearly Norwegian AAL Conference, uStore Inc organizes a service provider’s workshop to
discuss the matter. During this conference the community decides to start a new company to take care
of these technical expectations. The new company Install AS is set up as a cooperative by uStore user
community and gets the mandate to provide the following services (in line with AAL RA):

• A one-stop portal for technical discussions related to AAL service provision

• A directory of AAL services which complements the uStore business-oriented directory with
technical information about provided services

• Support for remote installation and maintenance of software

• Support for remote and mass configuration of deployed services

Install portal is mainly targeted at technically-oriented users. Because of compliance with the AAL
RA (e.g. RAS#3.2 which allows using wizards, modelling tools, conformance tools, build tools etc.
during development process) the portal is easily linked to uStore's portal. Browsing a service in uStore
one can now click and receive more technical information about service parts and information about
how services work. In addition, integration with uStore portal allows for one-stop shopping and
download of simple AAL services similar to what is currently available in commercial application
markets. End users are also provided with self-service functionality for simple maintenance, such as
upgrading software on their devices at home. These simple steps eliminate some of the costs related to
sending installers to people's home for every minor upgrade or maintenance.

In this way Install AS creates a national de facto standard for AAL service parts. In order to be
available in Install portal, services have to be packaged in a specific way, signed, made available
online etc. In order to assist SMEs with these tasks, Install AS starts cooperation with AALSource Inc,
an online developer community for programmers of AAL services. AALSource already provides a
comprehensive developer’s toolbox online, including source code management, build management,
forums etc. Together they plan a migration of AALSource into AAL RA and start providing the
following services:

• Online resources related to best practices for AAL service development

• Integration with user forums on uStore portal so that developers can have instant access to
user feedback on their services

• Integration with Install portal to allow direct upload of modules

• A set of tools based on the popular Eclipse development platform that helps developers in
their development of AAL service parts

• A set of code libraries in order to promote standardization of some service aspects

• Single-sign-on to AALSource, Install and uStore portals

The developments described here demonstrate a typical deployment of AAL Reference Architecture.
The resulting ecosystem is shown in Figure 23. In this figure each UML node symbol denotes one
business actor's location. The component instances in each node denote the part of the RA
functionality deployed in that premise. Some aspects relevant to this ecosystem and the usage of RA:

• The ecosystem is flexible and so should the RA be. The RA does not make any demand on the
existence of an actor, but supports the actor when it is present.

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 47 of 65

• The main stakeholders defined in the RA can be represented (partly) by various actors. For
instance, the RA Stakeholder Community Platform Provider is represented by three different
actors (uStore Inc, Betal AS, and Install AS) together providing the desired functionality.

Figure 23: The ecosystem involving the actors described in the storyboard

6.3.2 Client Stakeholder Perspective
In this section we provide an example of reference architecture deployment from a client perspective.
Peter Nitter is an elderly person who lives alone in Vestfold, Norway. His son Jack Nitter has a job in
Oslo and lives there. Jack worries about his father, since he has a problem following a healthy diet
after the death of his wife and moreover he has hypertension and high cholesterol level. In order to
assist his father in his independent living, Jack started to look for AAL services for him. He learnt
about the portal of uStore Inc. that offers AAL services in such areas as monitoring systems, alarm
systems, information provision to the elderly, daily cleaning and care, and coordination of staff.

Jack found a complete Nutrition Service Package at uStore Inc. that includes kitchen sensors for
cooking activity monitoring, provided by SensorTera Inc., and related software services, provided by
IT company InnovIT, for analysing cooking activities and providing nutritional advices based on a
nutritionist’s guidelines and its questionnaires. Jack liked the Nutrition Service Package as it just
looked like one complete seamlessly integrated service, since its parts were developed using Install AS
national de facto standard for AAL service parts. He had decided to acquire this service for his father,

 deployment Example ecosystem

uStore Inc.

Install AS

Betal AS

AALSource Inc

Typical user locations

Typical serv ice prov ider locations

Typical programmer locations

:Runtime Support
Tools

:Community
Support Tools

:Dev eloper
Support Tools

:Community
Support Tools

:Community
Support Tools

:Runtime Support
Platform

:AAL Serv ice Part

:Dev eloper Support
Platform

Technical support :
Community Support Platform

Community support :
Community Support

Platform

Payment support :Community
Support Platform

:AAL Serv ice
Part

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 48 of 65

so he requested the service via uStore Inc. portal and paid for it with the help of Betal AS payment
service provided at the portal. The users of uStore Inc. portal get attracted and start using it, since

• it is a one-stop portal to find various AAL services;
• AAL services are easy to search using information given by the service providers based on a

client needs and preferences;
• it offers bundle services composed out of services provided by different service providers to

bring complete AAL solutions;
• it has integrated ordering and paying services for AAL services’ acquisition.

Once the order had been finalized, sensors arrived and their installation in the kitchen was done by
SensorTera Inc. Jack also downloaded the corresponding software. During software installation
Jack’s father got registered as a main client and Jack as the caregiver. Peter also had to specify in the
form of consent the access policy to his data that are collected by the sensors and parts of software
services. First Peter chose from a list of available nutrition experts Anthony Hoest to be his nutrition
coach. Then he digitally signed the consent where he allowed data needed for appropriate running of
Nutrition Service to be only accessed by Anthony. During the installation process it was clearly stated
that the services in the package would only be using secure communication channels for data
communication and would only be storing personal data in the encrypted form. As a finishing touch,
Jack and his father personalized the services to take into account some of Peter’s food preferences and
peculiarities, e.g. he is allergic to honey. Services of uStore Inc. are trusted and popular, since

• services support secure communications of client data;
• privacy and security policies are in place and can be personalized;
• clients can request and obtain physical or remote assistance with installation and maintenance;
• services can be personalized.

Peter started to use the nutrition services. He receives his daily menu and shopping list every day.
Anthony is adjusting his menu using questionnaires that are sent to and filled by Peter and monitoring
Peter’s cooking activities and behaviour with a help of designated services. Jack feels confident that
his father has regular and healthy eating pattern. Moreover over time Jack also noticed that his father’s
blood pressure and cholesterol level started to improve.

One day Peter got a cold and stayed in bed. Sensors in the kitchen detected limited cooking activities,
and a monitoring service triggered an alarm for both Anthony and Jack. Knowing Peter’s health status,
Anthony contacted Peter to find out the course for this alarm and, advised him take more liquid. He
also adjusted Peter’s menu accordingly. Jack also contacted his father to check what was going on.
This event made Jack consider getting an extra service for his father. He searched uStore Inc. portal
for emergency notification service. He found a number of services. He read the reviews of the users
and in the end he liked two of them, as both had high user ratings and good reviews. So engaged into
the discussions of these services in the forum and in the end got convinced to select one that was
offering fall detection together with GPS positioning. Jack ordered the service. While ordering the
service, he also noticed that there was an additional interface available for the Nutrition Service that
gave information on calories intake, so he requested it as well. The interface was easy to add to the
existing nutrition service, with no need to restart the system. For the emergency notification service,
Peter also signed the consent only allowing his caregivers, Jack in this case, to access his location
information as well as fall detection alarm warnings. Moreover, he allows these data to be commutated
to emergency departments of Vestfold hospitals in case of a critical situation. Now Jack can better
monitor the status of his father. The users of uStore Inc. portal enjoy functionality of the offered
services that

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 49 of 65

• support user interaction by e.g. allowing to enter information and get correspondingly adjusted
service;

• support auditing trails that allows e.g. to support client monitoring service;
• are easily pluggable;
• provide possibility to communicate for the users of the portal and get service feedback of

other users.

Peter began to explore his services and posted on the Forum of uStore Inc. portal his experience with
nutrition service giving an enthusiastic example how it was being adjusted if you got sick. He also put
a post commenting that he got a new emergency notification service. Anthony was also monitoring
the forum of uStore Inc. portal to learn about client experience and opinion about nutrition service. He
was happy to see positive reaction of Peter. Both users and service providers appreciate the fact the
uStore Inc. portal supports

• possibility to provide service feedback for users;
• possibility to receive service feedback for service providers.

Ben Stiller works for national welfare organization in social service department. His department was
experiencing problems due to the fact that the number of people who require social or health care had
increased dramatically, while there was a lack of funding and personnel to deal with it. He learned
about AAL solutions and started to monitor the developments of AAL technologies at the uStore Inc.
portal. Seeing how this uStore Inc portal helps to promote well-being of individuals in need, he
recommended the local government to mandate the usage of universAAL platform for development
and provision of AAL services. His proposal got accepted. Ben is actively using uStore Inc. portal to
share the experience of deploying AAL services, to collect and analyse user experience of supported
service, so that he can advise the best practices to the local government. He also provides an active
feedback to the service and platform providers with respect to the possibilities for the quality
improvement from government and user perspective, and even puts requests for new services, which
the community would benefit from. The uStore Inc. portal is constantly in development improving
existing and providing new AAL services, since it

• collects feedback and requests for its services;
• supports communication with AAL Service Provider community.

In this whole scenario, RA plays an important role as in each of the stakeholder (e.g. end user, health
service provider, community welfare personnel) has used the underlying RAS provided. Using the
instantiation process in RA, specific concrete system architecture can be built to provide those RAS to
meet the requirements. Note that the ecosystem is flexible and can adapt to new actors and their needs
and requests. And this can be achieved by the steps described in chapter 507.

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 50 of 65

7 Instantiation and consolidation process from RA to CA
The Reference Architecture provides the mechanism to capture system constraints to deal with legacy
components, resource, time and technical capabilities. The purpose of this chapter is to provide a
guideline for a methodology to instantiate a Concrete Architecture (CA) from the Reference
Architecture (RA) we have presented. Thus the instantiation process from Reference Architecture to
Concrete Architecture includes implementing specific architecture by decomposing into
implementation specific components and by identifying actual relationships from the high level
relationships provided by Reference Architecture. The instantiation process from RA to CA includes
the identification of significant components with components’ responsibilities, interactions and control
and data flow. This instantiation process also identifies the non-functional architectural concerns like
security, reliability and other crosscutting concerns. From the reference architecture high level services
from different stakeholders and high level interactions among them, the instantiation process begins
with identification of significant services. As a whole the instantiation process from Reference
Architecture to Concrete Architecture includes the following possible steps.

1. Identification of specific stakeholders for the target Concrete Architecture
2. Identification of specific interconnection and interaction among the stakeholders for the target

Concrete Architecture
3. Apperception of reference use cases and stakeholders’ interest
4. Designation of reference architecture services using the mapping with RUCs and high level

requirements
5. Decomposition of services for Concrete Architecture
6. Atomization of component model for Concrete Architecture
7. Concrete deployment scheme for Concrete Architecture

The instantiations that are needed to transform an abstract Reference Architecture into actual systems
begin with instantiating a system architecture based on the Reference Architecture. This system
architecture is used to design and engineer the system, resulting in description of how the system can
actually be ordered, assembled and tested. The design and engineering effort not only provides
constraints on architectures but also opens opportunities.

The consolidation process plays an important role besides the instantiation. Using the experiences
from the existing AAL solutions provides a high relevance for the RA. Specific solutions from
subsisting concrete AAL architectures are analysed and this will lead the further refinement of the RA
with possible new requirements, stakeholders and their expectations and refined building blocks.

The instantiation process includes identification of significant components and connectors with
component responsibilities, interactions and control and data flow. The communicating architectural
details are constructed by using the reference architecture services from technical and non-technical
stakeholders’ point of view. The use case, the requirements and the mapping between the RUCs,
requirements and Reference Architecture Services (in our case, these mappings are presented in
Appendix A and Appendix B) provide a process for the identification of system properties for system
evolution, system load and portability. In Concrete Architecture, the Reference Architecture is attained
by replacing the mechanisms envisaged in the Reference Architecture with actual standards and
specifications. For example, a Concrete Architecture may specify that the run-time environment
deployed on the hosting nodes will be the Web Services Application Framework, and that a number of

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 51 of 65

specific communicating Web Services will implement the ‘runtime orchestration of services’
functional component.

The phases in the instantiation process

Phase 1: As reference architecture provides the business context with stakeholders and their
expectations, the first step of the instantiation process starts with identification of specific stakeholders
for the target system. From the AAL value network provided by universAAL reference architecture,
the relationships and the interactions of the stakeholders are identified for the target Concrete
Architecture for AAL.

Phase 2: This leads to the next step with identification of use cases related to those stakeholders. As
the Reference Architecture provides the mapping between RUCs and RAS (reference architecture
services) and also the high level requirements and RAS, the next step of the instantiation process
discovers the RAS provided by Reference Architecture.

When the target stakeholders are identified, Reference Architecture provides their service capabilities.
Using these service capabilities, an architect can design a concrete architecture by developing more
concrete service decomposition for Concrete Architecture. This associates atomization of services with
the identification of low level requirements, configuration properties and technical features of the
target system.

Phase 3: The next step of the instantiation process includes looking at the component model of
Reference Architecture. Using this component model, the Concrete Architecture is built by
implementing and decomposition of the specific components for the target system. This leads to the
need for identification of the services exchanged within the components identified in the previous step.
By using the service collaboration patterns, the instantiation of Concrete Architecture includes the
specific implementation of the services and the interaction among different components.

Phase 4: When it comes to the deployment of the services, the Reference Architecture provides the
high level process of deployment. So the target Concrete Architecture instantiation accommodates
those high level deployment scenarios into concrete ones by replacing the mechanism with actual
services for deployment. Last but not the least, the sample ecosystem in Reference Architecture
provides example scenarios for the use of Reference Architecture in different scopes with different
perspective. Designing the Concrete Architecture from Reference Architecture is facilitated by this
sample ecosystem which includes the mapping of the Reference Architecture to some specific
ecosystem. In the following chapter, a sample ecosystem is described from two different stakeholders’
perspective and hence the use of RA is depicted specifically.

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 52 of 65

8 Architecture Compliance
This section explains how other architectures intended to model AAL platforms can be compared to
the Reference Architecture and in what measure they can be compliant with it. It is important to stress
the fact that the RA can be compared to other platforms and not to specific applications or services.
As universAAL has a very wide scope, it is to be expected that other architectures will not easily
implement all the functionalities designed in universAAL. Nonetheless a formal compliance
assessment is necessary to identify the level and easiness of integration of other platforms with
universAAL.
Given the level of abstraction of the RA it is not possible to base the compliance on specific standards
or technologies, but it has to be done on the general principles of the architecture and the
functionalities. Two levels of compliance have been identified and described as follows.

Level 1: scope and stakeholders compliance
At this level the comparison among architectures is done on the very general purpose of the platform
being analyzed. The compliance check has to answer the following questions:

• What is the generic scope of the platform? In what domain does it fall?
• Who is the platform intended for? Who are its stakeholders?
• What concerns does the platform address?

Regarding the scope of the platform, it has to be specified what main application fields it covers.
There are different views that are related to different aspects of the AAL ecosystem: as reflected by
the RA and also the RUCs, the platform under analysis can fall into one or more of these categories:
Runtime Platform, Community Platform, and Developer Platform. Each category reflects different
functionalities, as well as different technical and organizational issues.
A tool for checking compliance can be based on a scoring sheet like the one represented below:

Type of platform Level of compliance as
regarding the scope (0:

none, 5: completely
matching)

Comments and
characteristics that do not

match

Runtime Platform
Community Platform
Developer Platform

Other scope can be defined for a certain platform which may not fall into these three categories; in this
case they should be listed and described carefully.
Regarding the stakeholders it has to be specified what of the following categories are covered, as
already described in section 3:

• Platform stakeholders
o Runtime Platform Provider
o Developer Platform Provider
o Community Platform Provider

• Client stakeholders
o End users
o Developers
o AAL service providers

• Authorities

Another possible view of the stakeholders’ model is the one offered by the AALiance

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 53 of 65

• Primary stakeholders.
• Secondary stakeholders
• Tertiary stakeholders

When specifying stakeholders it is useful to address also what concerns are covered by the system
under analysis. Within universAAL, concerns are described in Deliverable 1.1.
As with the scope, a checklist can be implemented on a table like the one below:

Stakeholder Concerns addressed Level of compliance as
regarding the

stakeholders (0: none, 5:
completely matching)

Comments and
characteristics that do

not match

Runtime Platform
Provider

Developer Platform
Provider

Community
Platform Provider

End users
Developers
AAL service
providers

Authorities

Level 2: services compliance
The functionalities of the universAAL RA are described as Reference Architecture Services or RASes.
The most detailed way of checking the compliance among the RA and another platform architecture is
to go through all the RASes and identify the level of compliance. The questions to be answered at this
level are:

• What categories of RASes does the platform under analysis support?
• What concrete RASes does the platform support? To what extent?

The tool for checking the compliance can be based on table as follows:
RAS

category
RAS Description Compliance level as

regarding the RAS
(0: not supported at

all, 5: completely
supported)

Comments and
characteristics

that do not
match

Platform-to-
Platform
services

1.1
Remote
maintenance
and
configuration

Allow remote
Configuration,
management and
maintenance of
software installed in
AAL spaces

 1.2
Audit data
management

Allow acquiring usage
data about service
usage in AAL spaces

 … …
Platform-to-
Client

1.4
User interaction

Facilitate user
interaction with the

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 54 of 65

services management runtime platform, e.g.
by providing consisting
look and feel and
adaptability

… … …
Peer
services

1.11
Communication

Allow generic
communication among
different types and
instances of runtime
platform

… … …
Platform-to-
Platform
services

2.1
Publish
development
tools

Upload, publish and
advertise development
tools, training courses,
related documentation,
etc.

… … …

As extra columns it would be interesting to also specify what specific technology, standard or
interoperability mean is adopted for every RAS. The checklist can be also limited to RAS categories
for a simpler analysis.

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 55 of 65

9 Validation of Reference Architecture
The purpose of this chapter is to provide a validation of the Reference Architecture using the mapping
among Reference Use Cases (details in D1.1) that evince stakeholders’ expectations and Reference
Architecture in terms of Reference Architecture Services (RAS) because the reference use cases from
D1.1 are used to generate a complete set of requirements and this reference architecture is based on the
concerns of a specifically identified set of stakeholders. Using this mapping of RUC and RAS, the
reference architecture can identify the mechanisms, patterns and approaches that are in common across
implementations of the reference architecture. The requirements (details in D1.2) represented by these
use cases provide a set of measurable constraints on the architecture by which conformance can be
determined. Not all RAS will be responsible for all the requirements in all of these RUCs. However,
any system that may want to leverage this reference architecture should have some overlap with at
least a subset of these RUCs and High level requirements (RC).
From another perspective (which uses the top down approach), the RA is validated against the
concepts and concept maps from Reference Model (RM) (Section 9.3). This includes a mapping of
RM concepts and RA services that build the behavioral aspects of RA. As there is many to many
relationship among Building blocks (bottom up approach) and RAS (top down approach), it also
suffices that this mapping of RM to RAS implies implicit mapping of RM to Building blocks with a
many to many relationship too.

9.1 Verification of Reference use cases addressed by the Reference
Architecture

In order to make stakeholder expectations more tangible and understandable to multiple parties, and
make them easily mapped onto a technical architecture, the developed set of Reference Use Cases
(RUCs) demonstrate, in an easy-to-understand way, what specific expectation of a stakeholder means
and how it can be supported by AAL technologies. Three categories of RUCs have been defined in
D1.1:

o Category 1: A platform for enabling innovative and commercial grade AAL services. These
are use cases that show how a platform can support higher QoS for AAL services at runtime.

o Category 2: A platform for creating a market place for AAL services. These are use cases that
show how a platform can promote an online community for AAL stakeholders, and remove
barriers for uptake of such services through promoting collaboration and business.

o Category 3: A platform for supporting developers to innovate in the AAL market. These are
use cases that show how the platform can help building a knowledgeable and capable
community of developers who can produce high-quality AAL services in collaboration with
users and service providers.

There is a mapping of the three categories onto the three platform stakeholders as we believe platform
stakeholders wish to specialize in their own area of expertise. Category 1 maps to Runtime Platform
Provider, category 2 to Community Platform Provider, and category 3 to Developer Platform
Provider. However, the RA also considers collaboration among the three platform stakeholders.
Appendix A shows an overview of which RUCs are supported in the RA.

As it is shown in Appendix A, all RUCs are supported by one or more RAS, indicating the high degree
of alignment between RUCs and the resulted Reference Architecture.

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 56 of 65

9.2 Verification of Reference Requirements
Due to consolidation of existing concepts in several parallel threads for producing early results, it
might seem that there will be no controlling entity behind the scene that would force the fitness of the
results for their intended purpose. Nevertheless, the project does not trust the results blindly and has
agreed on a general approach for consistency check and verification of “fitness for purpose”. For this
purpose, the consolidated set of requirements from D1.2 is taken as the driving force. Besides,
consolidation is not a fully mechanical way of dealing with information and knowledge; on the
contrary, the analytical judgement of the engineers is always playing an important role in this process.

In the case of the component view, this would mean that the requirements are used to verify the system
decomposition by mapping them to the identified components based on assumptions about the set of
requirements that each component is supposed to generally be able to fulfil. The first case should lead
to a double check to see if any new component must be added or the expectations from building blocks
should be completed, and the second case should trigger the process of checking if the component can
be eliminated for the sake of simplicity.

Figure 24: The table used for mapping building blocks to requirements (cropped both vertically and

horizontally)

The mapping was performed in two iterations, with the first one being an initial view and the second
being an additional verification. A tabular format proved to be useful for this task. As expected, all
building blocks could be connected to some requirements. Some requirements, however, didn’t match
any distinct building block for different reasons, e.g.:

• Some requirements can be evaluated in the context of the other models in the component
view, which will be the System Information Model, the System Collaboration Model, and the
Component and Interface Specification Model. For example, the requirement R1.1.3 about
“Minimalism: At the LIF8 only objects and functions should be visible, that are required for
the interaction with other subsystems” is related to the Component and Interface Specification
Model. These requirements will be taken into consideration when the corresponding model is
specified.

• Some requirements are valid for all components, e.g., R1.3.13 (Off-line operation: For
running the system internet connection should not be required all the time).

• Some requirements are only verifiable in the context of a specific application, e.g. R2.1.7.06
(No interference with life sensors: (Wearable) Sensors must not interfere in the common
behaviour of the user).

8 Linking Interface. A Term borrowed from the GENESIS project, defined the following way: “A job provides
its real-time services, and accesses the real-time services of other jobs by the exchange of messages across its
Linking Interface (LIF). These messages have to be fully specified in a LIF specification which consists of an
operational specification and a LIF service model specification.”

Layer Expert group Building Block Subcomponent
/ Feature

Req Req Req Req Req Req

Middleware Middleware Container R2.2.05.07 R2.2.05.08 R2.2.05.04 R2.2.05.01 R2.2.06.1 R2.2.06.2
 Communication R2.2.01.01 R2.2.01.02 R2.2.01.03 R2.2.01.04 R2.2.01.05 R2.2.01.06
 Discovery &

Peering
 R2.2.01.12 R2.2.01.14 R2.2.01.15 R2.2.01.04 R2.2.03.3 R2.2.05.01

 Specific
Protocol

R2.2.01.07 R2.2.01.16

 Bridging R2.2.01.14 R2.2.01.15 R2.2.01.04
Generic
Platform
Services

Gateways and
communication
with external
world

AAL Space
Gateway

 R1.3.12 R2.1.1.16 R2.1.2.21 R2.1.3.02 R2.1.3.08 R2.1.8.10

 service
infrastructure

Service
Management

 R1.1.1 R1.3.01 R2.1.6.7 R2.1.7.01 R2.2.19.5 R2.2.01.13

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 57 of 65

It is worth to mention that this verification has provided us also with some important insights:

• Figure 8: The consolidated decomposition model of the Runtime support platform at the level
of abstract building blocks

• , enumerates sometimes “features”, such as publishing, subscribing, or brokering, for the
building blocks that were added to reflect important expectations. Although these features are
necessary for a component’s functioning, some of them could not be mapped to any
requirements. This can be an indication that these “features” are related to the internals of
those components and hence might not find any reflection at the requirement level, unless we
relate them to the more generic requirements, such as separation of concerns.

• On the other hand, for a few requirements, where it was possible to assume that they could be
satisfied by a pluggable component, it was not decidable if this pluggable component should
be classified as a “pickable” manager or an AAL application because application-level
interoperability is supposed to be supported anyhow (cf. the case of “indirect intra-layer
communication through the middleware”). Quite a few of such cases have been encountered,
like support for VOIP, Fall handler and Health Manager Assistant. This caused discussions
about the necessity of differentiating “pickable” managers from applications. For example,
according to one opinion, every component that does not belong to the core set of managers
and is not mandatory can be classified as an application. However, finally it was
acknowledged that under the premises of the collaboration model (see next section); such a
differentiation has only a logical value anyhow and will not have any practical consequences
for the architecture of the system.

• Finally, it was found out that some of the requirements that can be mapped to all components,
e.g. R2.2.09.08 Standardized Test-Interfaces, fit perfectly the Container building block, thus
relieving “all components” from fulfilling the requirements because the Container is supposed
to force them due to the expectation to provide control over the execution model of the other
components in the architecture.

In the case of the collaboration view, this would mean that the requirements are used to verify the
service collaboration patterns by mapping them to the identified RAS. The results show that all the
high level requirements that are identified in D1.2 are supported by at least one Reference Architecture
Service (RAS). As high level requirements are met, it also implies that corresponding Technical
Requirements (TR) are also supported by RAS. As for example, the high level requirement in
‘Reliability and Safety’ category (RC9_C1) is supported by RAS#1.9 which is the Runtime
orchestration of services provided to the Community Support Tool. The complete analysis can be
found in Appendix B.

As conclusion, it can be summarized that the Reference Architecture covers appropriately the
consolidated list of requirements, ensuring the consistency between these two project results.

9.3 Verification of the abstraction process: mapping of RM to RAS
In terms of instantiation (i.e. the top-down approach), to validate the Reference architecture the
mapping from the RM concepts to the RA services can be considered. The direct qualitative property
that follows from this method is coverage, a method to measure the relationships between RM
concepts and RA services. Indirectly this provides a qualitative property for deductibility and
consistency. The primary relationships that are considered are the “instantiates”-relationship and “is
abstraction of”-relationship. For the analysis, the RM concept map terms and descriptions are used.
For the RA services the names and descriptive key lines are used. The previous results in explicit
matches. Where reasonable also synonyms and strongly related words and concepts are counted as
matches, thereby providing more implicit matches. Figure 25 provides a summary of the analysis.
Detailed results are provided in Appendix C.

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 58 of 65

Figure 25: Summary of mapping RM concepts to RA services

The main result of the mapping analysis is that there is a good relationship between the RM concepts
and RA services, which positively validates the Reference architecture. This is supported by the many
“X” marks in the summary table and details table. One may notice that the mapping has a number of
RM concepts and RA services categories where mapping relationships are concentrated, which are
indicated through a red color in the figure. This conclusion however also comes with a few critical
remarks: a significant number of RM concepts as well as RA services do not hold a “is abstraction of”-
relationship or “instantiates”-relationship respectively with the other, which can be recognized in the
figure and table through a white instead of black block behind respectively below their names. Closer
inspection of this leads to the expectation that this is mainly a matter of rigor and not of architectural
inconsistencies.

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 59 of 65

10 Conclusion/Further Work
The RA is the result of two main convergent processes: on one hand a top-down process from the RM
in order to introduce technical contents with a reduced gap of abstraction and, on the other hand, a
bottom-up process from the CA that has the main goal to provide a generalized view at the
universAAL architecture. This last version of the deliverable has completed the abstraction process
from the Concrete Architecture (D1.3 part IV), ensuring that appropriate level of abstraction has been
provided in each part. Also, a consistency check with both RM and CA has been performed together
with verification of compliance with RUCs and Requirements demonstrating that the resulting
Reference Architecture is consistent and coherent with all those other project results.

The future work relies in wide spreading this result in the AAL Community and to start the process of
standardization of the Reference Architecture in the appropriate bodies, to ensure its adoption by
relevant stakeholders. This will be done in the scope of Task 1.5 and reported in D1.4.

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 60 of 65

References

[1] J. Amsden, “Modeling with SoaML, the Service-Oriented Architecture Modeling Language: Part

1. Service identification,” 07-Jan-2010. [Online]. Available:
http://www.ibm.com/developerworks/rational/library/09/modelingwithsoaml-1/. [Accessed: 03-
Feb-2011].

[2] H. Kreger and J. Estefan, “Navigating the SOA Open Standards Landscape Around
Architecture,” OASIS, OMG, and The Open Group, White paper, 2009.

 [3] G. Van Den Broek, F. Cavallo, and C. Wehrmann, Eds., Ambient Assisted Living Roadmap. IOS
Press, 2010.

[4] H. Chesbrough, “Open platform innovation: Creating value from internal and external
innovation,” Intel Technology Journal, vol. 7, no. 3, pp. 5–9, 2003.

[5] J. F. Moore, “Predators and Prey: A New Ecology of Competition,” Harvard Business Review,
no. May, 1993.

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 61 of 65

Appendix A. Mapping between Reference use cases and RA
services
This appendix provides the mapping between RUCs and the RA services that provides support to
realize them. The RAS definitions are provided in Section 5. For detailed description of each RUC
please consult D1.1.9

Cat. RUC ID RUC description RA services that provide
support

1 RUC#1 Supporting rich human computer interaction RAS#1.7, 1.24

1 RUC#2 Supporting intelligent context management and
hardware abstraction

RAS#1.28,

1 RUC#3 Enabling system driven interaction RAS#2.17

1 RUC#4 Supporting continuity of care in different AAL
spaces

RAS#1.8

1 RUC#5 Supporting end user security and privacy RAS#1.5, 1.8, 1.9, 1.38, 1.39,
1.47

1 RUC#6 Supporting installation, configuration and
management of platform components

RAS#2.4, 1.24, 1.21, 1.2, 1.20

1 RUC#7 Supporting remote/local operation and
provision of AAL services

RAS, 1.20, 1.4, 1.2

1 RUC#8 Supporting multi-user AAL services in each
AAL space

RAS#1.4, 1.23, 1.8

1 RUC#9 Supporting interfacing with existing
information systems

RAS#1.28

2 RUC#10 Supporting service providers in offering AAL
services

RAS#2.13, RAS#2.18, RAS#2.19

2 RUC#11 Allowing users to easily find and acquire AAL
services

RAS#2.4, RAS#2.5, RAS#2.7,
RAS#2.9, RAS#2.11

2 RUC#12 Supporting exploitation of different business
models

RAS#2.9, RAS#2.15, RAS#2.19,
RAS#2.23, RAS#2.24

9 It should be kept in mind that the list of RUCs presented here is the result of an extensive consolidation process
where scenarios and requirements from a large group of EU projects (the so-called "input projects" in
universAAL terminology) were analyzed and generalized into RUCs. Each individual input project has had its
own research methodology for arriving at its scenarios and requirements. In this way the list of RUCs here is the
result of extensive research done earlier, and not presented in this deliverable.

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 62 of 65

Cat. RUC ID RUC description RA services that provide
support

2 RUC#13 Capturing and utilizing user feedback RAS#2.8, RAS#2.10, RAS#2.12,
RAS#2.20, RAS#2.22, RAS#2.25,
RAS#2.26

3 RUC#14 Supporting rapid development of AAL
services

RAS#3.1, RAS#3.2

3 RUC#15 Model-based development of AAL services
through integrated model transformation tools

RAS#3.2

3 RUC#16 Supporting online elicitation of requirements
and collection of runtime feedback from users
of AAL services

RAS#2.8, RAS#2.10, RAS#2.20,
RAS#2.22, RAS#2.25, RAS#2.26

3 RUC#17 Supporting advanced search, reuse and sharing
of service components and developer resources

RAS#3.1, RAS#3.2, RAS#3.4

3 RUC#18 Supporting utilization of personalization
capabilities of AAL services

RAS#1.21, RAS#2.4

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 63 of 65

Appendix B. Mapping between high level requirements and RA
Services
This appendix shows the relationship between Reference Use Cases, defined in D1.1, High level
requirements, available in D1.2, and the supported RA services. The high level requirements are
marked with an ‘R’ preceded by requirement category abbreviation mark ‘RC’. As for example,
‘RCx_Ry’ denotes the high level requirement ‘y’ for requirement category ‘x’. The detailed
description of the high level requirements is available in D1.2. This table shows that all the high level
requirements that are identified in D1.2 are supported by at least one Reference Architecture Service
(RAS).

Requirements Category High level

requirements
Reference Architecture Service
(RAS) that provide support

1 Context Information and Context
Management

RC1_R1 RAS#1.7,1.24,1.28

RC1_R2 RAS#1.7,1.24,1.28

2 Transparency, Privacy and Security

RC2_R1 RAS#1.5, 1.8, 1.9, 1.38, 1.39, 1.47

RC2_R2 RAS#1.5, 1.8, 1.9, 1.38, 1.39, 1.47

RC2_R3 RAS#1.5, 1.8, 1.9, 1.38, 1.39, 1.47

RC2_R4 RAS#1.5, 1.8, 1.9, 1.38, 1.39, 1.47

3 Support for Designing Human-Computer
Interaction

RC3_R1 RAS#1.7,1.24,1.9,2.17

4 Service Orientation

RC4_R1 RAS#1.28,1.9,2.17, 1.16, 1.2, 1.20,
1.21, 1.24, 2.4

RC4_R2 RAS#1.28,1.9,2.17, 1.16, 1.2, 1.20,
1.21, 1.24, 2.4

RC4_R3 RAS#1.28,1.9,2.17, 1.16, 1.2, 1.20,
1.21, 1.24, 2.4

5 Interoperability with Legacy and Remote
Components and Systems

RC5_R1 RAS#1.28

RC5_R2 RAS#1.28

RC5_R3 RAS#1.28

6 Configuration, Personalisation and
Maintainability

RC6_R1 RAS#1.9,2.17, 1.5, 1.8, 1.9, 1.38,
1.39, 1.47, 1.16, 1.2, 1.20, 1.21, 1.24,
2.4, 1.20, 1.4, 1.2,1.23

RC6_R2 RAS#1.9,2.17, 1.5, 1.8, 1.9, 1.38,
1.39, 1.47, 1.16, 1.2, 1.20, 1.21, 1.24,
2.4, 1.20, 1.4, 1.2,1.23

RC6_R3 RAS#1.9,2.17, 1.5, 1.8, 1.9, 1.38,
1.39, 1.47, 1.16, 1.2, 1.20, 1.21, 1.24,

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 64 of 65

2.4, 1.20, 1.4, 1.2,1.23

RC6_R4 RAS#1.9,2.17, 1.5, 1.8, 1.9, 1.38,
1.39, 1.47, 1.16, 1.2, 1.20, 1.21, 1.24,
2.4, 1.20, 1.4, 1.2,1.23

7 Execution Environment and Component
and Application Container for Heterogenic
Devices and Operating Systems

RC7_R1 RAS#1.9,2.17,1.8, 1.16, 1.2, 1.20,
1.21, 1.24, 2.4

RC7_R2 RAS#1.9,2.17,1.8, 1.16, 1.2, 1.20,
1.21, 1.24, 2.4

RC7_R3 RAS#1.9,2.17,1.8, 1.16, 1.2, 1.20,
1.21, 1.24, 2.4

RC7_R4 RAS#1.9,2.17,1.8, 1.16, 1.2, 1.20,
1.21, 1.24, 2.4

RC7_R5 RAS#1.9,2.17,1.8, 1.16, 1.2, 1.20,
1.21, 1.24, 2.4

8 Shared Communication Infrastructure

RC8_R1 RAS#1.7,1.24

9 Reliability and Safety RC9_R1 RAS#1.9,2.17, 1.16, 1.2, 1.20, 1.21,
1.24, 2.4

D1.3-E Reference Architecture Part III: Reference Architecture

Last printed 18/11/13 18:46 Part III: Page 65 of 65

Appendix C. Mapping between RM concepts and RA services

